974 resultados para Ni(II) complexes,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of mono(eta(5)-cyclopentadienyl)metal-(II) complexes with nitro-substituted thienyl acetylide ligands of general formula [M(eta(5)-C5H5)(L)(C C{C4H2S}(n)NO2)] (M = Fe, L = kappa(2)-DPPE, n = 1,2; M = Ru, L = kappa(2)-DPPE, 2 PPh3, n = 1, 2; M = Ni, L = PPh3, n = 1, 2) has been synthesized and fully characterized by NMR, FT-IR, and UV-Vis spectroscopy. The electrochemical behavior of the complexes was explored by cyclic voltammetry. Quadratic hyperpolarizabilities (beta) of the complexes have been determined by hyper-Rayleigh scattering (HRS) measurements at 1500 nm. The effect of donor abilities of different organometallic fragments on the quadratic hyperpolarizabilities was studied and correlated with spectroscopic and electrochemical data. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations were employed to get a better understanding of the second-order nonlinear optical properties in these complexes. In this series, the complexity of the push pull systems is revealed; even so, several trends in the second-order hyperpolarizability can still be recognized. In particular, the overall data seem to indicate that the existence of other electronic transitions in addition to the main MLCT clearly controls the effectiveness of the organometallic donor ability on the second-order NLO properties of these push pull systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes of 2,6-dimethoxybenzoic acid anion with ions of Co(II), Ni(II), and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies, and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have following colours: pink for Co(II), green for Ni(II), and blue for Cu(II) compounds. The carboxylate group binds as monodentate, and bidentate bridging and chelating ligands. On heating in air to 1173 K the complexes decompose in four, three or two steps. At first, they dehydrate in one or two steps to anhydrous salts, that next decompose to oxides of the respective metals. The solubility of the investigated dimethoxybenzoates in water at 293 K is of the order of 10-2 mol/dm3. Their magnetic moments were determined in the temperature range of 76-303 K. The results reveal the compounds of Co(II) and Ni(II) to be high-spin complexes and that of Cu(II) to form dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 ­ 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 ­ 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 ­ 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The crystal and molecular structures of [bis(5-chloro-2-methoxybenzoate)tetraaquamanganese(II)], [pentaaqua(5-chloro-2-methoxybenzoato)cobalt(II)] (5-chloro-2-methoxybenzoate), [pentaaqua(5-chloro-2-methoxybenzoato)nickel(II)] (5-chloro-2-methoxybenzoate) and [aquabis(5-chloro-2-methoxybenzoate)zinc(II)] monohydrate were determined by a single-crystal X-ray analysis. Mn(H2O)4L2 (where L = C8H6ClO3) crystallizes in the monoclinic system, space group P21/c. [Co(H2O)5L]L and [Ni(H2O)5L]L both are isostructural, space group P212121. The crystals of [Zn(H2O)L2] H2O are monoclinic, space group Pc. Mn(II) ion is positioned at the crystallographic symmetry center. Mn(II) and Co(II) ions adopt the distorted octahedral coordination but Zn(II) tetrahedral one.The carboxylate groups in the complexes with M(II) cations function as monodentate, bidentate and/or free COO-groups. The ligands exist in the crystals as aquaanions. The complexes of 5-chloro-2-methoxybenzoates with Mn(II), Co(II) and Zn(II) form bilayer structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes of 4-chlorophenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II) have been synthesized as polycrystalline solids, and characterized by elemental analysis, spectroscopy, magnetic studies and also by X-ray diffraction and thermogravimetric measurements. The analysed complexes have the following colours: pink for Co(II), green for Ni(II), blue for Cu(II) and a pale pink for Mn(II) compounds. The carboxylate group binds as monodentate and bidentate ligands. On heating to 1173K in air the complexes decompose in several steps. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals. Their magnetic moments were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexes of 2-methoxyhenoxyacetates of Mn(II), Co(II), Ni(II) and Cu(II)with the general formula: M(C9H9O4)3·4H2O, where M(II) = Mn, Co, Ni and Cu have been synthesized and characterized by elemental analysis, IR spectroscopy, magnetic and thermogravimetric studies and also X-ray diffraction measurements. The complexes have colours typical for M(II) ions (Mn(II) - a pale pink, Co(II) - pink, Ni(II) - green, and Cu(II) - blue). The carboxylate group binds as monodentate and bidentate ligands. On heating to 1273K in air the complexes decompose in the same way. At first, they dehydrate in one step to anhydrous salts, that next decompose to the oxides of respective metals with the intermediate formation of the oxycarbonates. Their solubility in water at 293K is of the order of 10-5 mol·dm-3. The magnetic moments of analysed complexes were determined in the range of 76-303K. The results reveal them to be high-spin complexes of weak ligand fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equilibrium study on complex formation of Co(II), Ni(II), Cu(II) and Zn(II), hereafter M(II), with the quadridentate (O-, N, O-, N) donor ligand, N-(2-hydroxybenzyl)-L-histidine (H(2)hb-L-his, hereafter H2L), in the absence and in the presence of typical (N, N) donor bidentate ligands, 1,10 phenanthroline(phen), 2, 2'-bipyridine(bipy), ethylenediamine(en), hereafter B, in aqueous solution at 25 +/- 1 degrees C was done at a fixed ionic strength, I = 0.1 mol dm(-3) (NaNO3) by combined pH-metric, UV-Vis and EPR measurements provide evidence for the formation of mononuclear and dinuclear binary and mixed ligand complexes of the types: M(L), M(L)(2)(2-), M-2(L)(2+), M-2(H-1L)(+), M(L)(B), (B)M(H-1L)M(B)(+). The imidazole moiety of the ligand is found to act as a bridging bidentate ligand in the dinuclear M-2(L)(2+), M-2(H-1L)(+) and (B)M(H-1L)M(B)(+) complexes, using its N-3 atom and N1-H deprotonated moiety. Stability constants of the complexes provide evidence of discrimination of Cu(II) from the other M(II) ions by this ligand. Solid complexes: [Ni(L)(H2O)(2)] (1), [Cu(L)(H2O)] (2), and [Ni(L)(bipy)] (.) H2O (3) have been isolated and characterized by various physicochemical studies. Single crystal X-ray diffraction of the ternary complex, 3, shows an octahedral [(O-,N,N,O-)(N,N)] geometry with extensive pi-pi stacking of the aromatic rings and H-bonding with imidazole (N1-H), secondary amino N-atom, the lattice H2O molecule, and the carboxylate and phenolate O-atoms. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two sets of nickel(11) complexes of a series of tetradentate NSNO ligands were synthesized and isolated in their pure form. All these complexes, formulated as [Ni(L)Cl](2) and [Ni(L)(N-3)](2) [HL = pyridylthioazophenols], were characterized using physicochemical and spectroscopic tools. The solid-state structures of two complexes (1a and 2a) were established by X-ray crystallography. The geometry about the nickel ion of the complexes is octahedral and the complexes are dimeric in nature. In 1, two Ni(II) ions are bridged by two Cl- anions while in 2 they are bridged by two azide ions in a mu-1,1-bridging fashion. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The previously synthesised Schiff-base ligands 2-(2-Ph2PC6H4N = CH) - R' - C6H3OH (R' = 3-OCH3, HL1; 5-OCH3, HL2; 5-Br, HL3; 5-Cl, HL4) were prepared by a faster, more efficient route involving a microwave assisted co-condensation of 2-(diphenylphosphino) aniline with the appropriate substituted salicylaldehyde. HL1-4 react directly with (MCl2)-Cl-II (M = Pd, Pt) or (PtI2)-I-II(cod) affording neutral square-planar complexes of general formula [(MCl)-Cl-II(eta(3)-L1-4)] (M = Pd, Pt, 1 - 8) and [(PtI)-I-II(eta(3)-L1-4)] (M = Pd, Pt, 9 - 12). Reaction of complexes 1 - 4 with the triarylphosphines PR3 (R = Ph, p-tolyl) gave the novel ionic complexes [Pd-II(PR3)(eta(3)- L1-4)] ClO4 (13 - 20). Substituted platinum complexes of the type [Pt-II(PR3)(eta(3)- L1-4)] ClO4 (R = P(CH2CH2CN)(3) 21 - 24) and [Pt-II( P(p-tolyl)(3))(eta(3)-L-3,L-4)] ClO4 ( 25 and 26) were synthesised from the appropriate [(PtCl)-Cl-II(eta(3)-L1-4)] complex (5 - 8) and PR3. The complexes are characterised by microanalytical and spectroscopic techniques. The crystal structures of 3, 6, 10, 15, 20 and 26 were determined and revealed the metal to be in a square-planar four-coordinate environment containing a planar tridentate ligand with an O, N, P donor set together with one further atom which is trans to the central nitrogen atom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three new mononuclear complexes of nitrogen-sulfur donor sets, formulated as (Fe-II(L)Cl-2] (1), [Co-II(L)Cl-2] (2) and [Ni-II(L)Cl-2] (3) where L = 1,3-bis(2-pyridylmethylthio)propane, were synthesized and isolated in their pure form. All the complexes were characterized by physicochemical and spectroscopic methods. The solid state structures of complexes I and 3 have been established by single crystal X-ray crystallography. The structural analysis evidences isomorphous crystals with the metal ion in a distorted octahedral geometry that comprises NSSN ligand donors with trans located pyridine rings and chlorides in cis positions. In dimethylformamide solution, the complexes were found to exhibit Fe-II/Fe-III, co(II)/co(III) and Ni-II/Ni-III quasi-reversible redox couples in cyclic voltammograms with E-1/2 values (versus Ag/AgCl at 298 K) of +0.295, +0.795 and +0.745 V for 1, 2 and 3, respectively. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two new reduced Schiff base ligands, [HL1 = 4-(2-[(pyridin-2-ylmethyl)-amino]-ethylimino)-pentan-2-one and HL2 =4-[2-(1-pyridin-2-yl-ethylamino)-ethylimino]-pentan-2-one] have been prepared by reduction of the corresponding tetradentate unsymmetrical schiff bases derived from 1.1: 1 condensation of 1,2-ethanediamine, acetylacetone and pyridine-2-carboxaldehyde/2-acetyl pyridine. Four complexes, [Ni(L-1)]ClO4 (1), [Cu(L-1)]ClO4 (2). [Ni(L-2)]ClO4 (3). and [Cu(L-2)]ClO4 (4) with these two reduced Schiff base ligands have been synthesized and structurally characterized by X-ray crystallography. The mono-negative ligands L-1 and L-2 are chelated in all four complexes through the four donor atoms to form square planar nickel(II) and copper(II) complexes Structures of 3 and 4 reveal that enantiomeric pairs are crystallized together with opposite chirality in the nitrogen and carbon atoms. The two Cu-II complexes (2 and 4) exhibit both irreversible reductive (Cu-II/Cu-II, E-pc. -1.00 and -1.04 V) and oxidative (Cu-II/CUII, E-pa, + 1.22 and + 1.17 V, respectively) responses in cyclic voltammetry. The electrochemically generated Cu-1 species for both the complexes are unstable and undergo disproportionation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three double phenoxido-bridged dinuclear nickel(II) complexes, namely [Ni-2(L-1)(2)(NCS)(2)] (1), [Ni-2(L-2)(2)(NCS)(2)] (2), and [Ni-2(L-3)(2)(NCS)(2)] (3) have been synthesized using the reduced tridentate Schiff-base ligands 2-[1-(3-methylamino-propylamino)-ethyl]-phenol (HL1), 2-[1-(2-dimethylamino-ethylamino)-ethyl]-phenol (HL2), and 2-[1-(3-dimethylarnino-propylamino)-ethyl]-phenol (HL3), respectively. The coordination compounds have been characterized by X-ray structural analyses, magnetic-susceptibility measurements, and various spectroscopic methods. In all complexes, the nickel(II) ions are penta-coordinated in a square-pyramidal environment, which is severely distorted in the case of 1 (Addison parameter tau = 0.47) and 3 (tau = 0.29), while it is almost perfect for 2 (tau = 0.03). This arrangement leads to relatively strong antiferromagnetic interactions between the Ni(II) (S = 1) metal centers as mediated by double phenoxido bridges (with J values of -23.32 (1), -35.45 (2), and -34.02 (3) cm(3) K mol(-1), in the convention H = -2JS(1)S(2)). The catalytic activity of these Ni compounds has been investigated for the aerial oxidation of 3,5-di-tert-butylcatechol. Kinetic data analysis following Michaelis-Menten treatment reveals that the catecholase activity of the complexes is influenced by the flexibility of the ligand and also by the geometry around the metal ion. Electrospray ionization mass spectroscopy (ESI-MS) studies (in the positive mode) have been performed for all the coordination compounds in the presence of 3,5-DTBC to characterize potential complex-substrate intermediates. The mass-spectrometry data, corroborated by electron paramagnetic resonance (EPR) measurements, suggest that the metal centers are involved in the catecholase activity exhibited by the complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ni(II)GGH (GGH, glycylglycyl-L-histidine) reacts rapidly with S(IV), in air-saturated solution, to produce Ni(III)GGH. A mechanism is proposed where Ni(III) oxidizes SO(3)(2-) to SO(3)(center dot-), which reacts with dissolved oxygen to produce SO(5)(center dot-), initiating radical chain reactions. DNA strand breaks and 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodGuo) formation were observed in air-saturated solutions containing micromolar concentrations of nickel(II) and S(IV). The efficacies of melatonin, (-)-epigallocatechin-gallate (from green tea), resveratrol, tannic, and ascorbic acids in terms of their inhibitory activities of DNA strand breaks and 8-oxodGuo formation were evaluated.