957 resultados para Newton-Krylov
Resumo:
Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We consider the problem of optimal routing in a multi-stage network of queues with constraints on queue lengths. We develop three algorithms for probabilistic routing for this problem using only the total end-to-end delays. These algorithms use the smoothed functional (SF) approach to optimize the routing probabilities. In our model all the queues are assumed to have constraints on the average queue length. We also propose a novel quasi-Newton based SF algorithm. Policies like Join Shortest Queue or Least Work Left work only for unconstrained routing. Besides assuming knowledge of the queue length at all the queues. If the only information available is the expected end-to-end delay as with our case such policies cannot be used. We also give simulation results showing the performance of the SF algorithms for this problem.
Resumo:
A micro-newton static force sensor is presented here as a packaged product. The sensor, which is based on the mechanics of deformable objects, consists of a compliant mechanism that amplifies the displacement caused by the force that is to be measured. The output displacement, captured using a digital microscope and analyzed using image processing techniques, is used to calculate the force using precalibrated force-displacement curve. Images are scanned in real time at a frequency of 15 frames per second and sampled at around half the scanning frequency. The sensor was built, packaged, calibrated, and tested. It has simulated and measured stiffness values of 2.60N/m and 2.57N/m, respectively. The smallest force it can reliably measure in the presence of noise is about 2 mu N over a range of 1.4mN. The off-the-shelf digital microscope aside, all of its other components are purely mechanical; they are inexpensive and can be easily made using simple machines. Another highlight of the sensor is that its movable and delicate components are easily replaceable. The sensor can be used in aqueous environment as it does not use electric, magnetic, thermal, or any other fields. Currently, it can only measure static forces or forces that vary at less than 1Hz because its response time and bandwidth are limited by the speed of imaging with a camera. With a universal serial bus (USB) connection of its digital microscope, custom-developed graphical user interface (GUI), and related software, the sensor is fully developed as a readily usable product.
Resumo:
We present the first q-Gaussian smoothed functional (SF) estimator of the Hessian and the first Newton-based stochastic optimization algorithm that estimates both the Hessian and the gradient of the objective function using q-Gaussian perturbations. Our algorithm requires only two system simulations (regardless of the parameter dimension) and estimates both the gradient and the Hessian at each update epoch using these. We also present a proof of convergence of the proposed algorithm. In a related recent work (Ghoshdastidar, Dukkipati, & Bhatnagar, 2014), we presented gradient SF algorithms based on the q-Gaussian perturbations. Our work extends prior work on SF algorithms by generalizing the class of perturbation distributions as most distributions reported in the literature for which SF algorithms are known to work turn out to be special cases of the q-Gaussian distribution. Besides studying the convergence properties of our algorithm analytically, we also show the results of numerical simulations on a model of a queuing network, that illustrate the significance of the proposed method. In particular, we observe that our algorithm performs better in most cases, over a wide range of q-values, in comparison to Newton SF algorithms with the Gaussian and Cauchy perturbations, as well as the gradient q-Gaussian SF algorithms. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We present a new Hessian estimator based on the simultaneous perturbation procedure, that requires three system simulations regardless of the parameter dimension. We then present two Newton-based simulation optimization algorithms that incorporate this Hessian estimator. The two algorithms differ primarily in the manner in which the Hessian estimate is used. Both our algorithms do not compute the inverse Hessian explicitly, thereby saving on computational effort. While our first algorithm directly obtains the product of the inverse Hessian with the gradient of the objective, our second algorithm makes use of the Sherman-Morrison matrix inversion lemma to recursively estimate the inverse Hessian. We provide proofs of convergence for both our algorithms. Next, we consider an interesting application of our algorithms on a problem of road traffic control. Our algorithms are seen to exhibit better performance than two Newton algorithms from a recent prior work.
Resumo:
Air exploratory discussion of an ancient Chinese algorithm, the Ying Buzu Shu, in about 2nd century BC, known as the rule of double false position in the West is given. In addition to pointing out that the rule of double false position is actually a translation version of the ancient Chinese algorithm, a comparison with well-known Newton iteration method is also made. If derivative is introduced, the ancient Chinese algorithm reduces to the Newton method. A modification of the ancient Chinese algorithm is also proposed, and some of applications to nonlinear oscillators are illustrated.
Resumo:
We study the global behaviour of a Newton algorithm on the Grassmann manifold for invariant subspace computation. It is shown that the basins of attraction of the invariant subspaces may collapse in case of small eigenvalue gaps. A Levenberg-Marquardt-like modification of the algorithm with low numerical cost is proposed. A simple strategy for choosing the parameter is shown to dramatically enlarge the basins of attraction of the invariant subspaces while preserving the fast local convergence.
Resumo:
We show the four-dimensional Newton's constant obtained naturally from five-dimensional brane world with a tinily sloping extra dimension, which is independent of the bulk Weyl tensor. The corresponding universe is stiff fluid dominated when the slope of extra dimension is very small. Otherwise, the universe may be undergoing a self-acceleration at present epoch and have a decelerated phase in very recent past.