541 resultados para New Zealand. Entomology.
Resumo:
Groundwater from Maramarua has been identified as coal seam gas (CSG) water by studying its composition, and comparing it against the geochemical signature from other CSG basins. CSG is natural gas that has been produced through thermogenic and biogenic processes in underground coal seams; CSG extraction requires the abstraction of significant amounts of CSG water. To date, no international literature has described coal seam gas water in New Zealand, however recent CSG exploration work has resulted in CSG water quality data from a coal seam in Maramarua, New Zealand. Water quality from this site closely follows the geochemical signature associated with United States CSG waters, and this has helped to characterise the type of water being abstracted. CSG water from this part of Maramarua has low calcium, magnesium, and sulphate concentrations but high sodium (334 mg/l), chloride (146 mg/l) and bicarbonate (435 mg/l) concentrations. In addition, this water has high pH (7.8) and alkalinity (360 mg/l as CaCO3), which is a direct consequence of carbonate dissolution and biogenic processes. Different analyte ratios ('source-rock deduction' method) have helped to identify the different formation processes responsible in shaping Maramarua CSG water
Resumo:
Following the success of Coalbed Natural Gas (CBNG) operations in the United States, companies in Australia and New Zealand have been actively exploring and developing this technology for the last two decades. In particular, the Bowen and Surat basins in Queensland, Australia, have undergone extensive CBNG development. Unfortunately, awareness of potential environmental problems associated with CBNG abstraction has not been widespread and legislation has at times struggled to keep up with rapid development. In Australia, the combined CBNG resource for both the Bowen and Surat basins has been estimated at approximately 10,500 PJ with gas content as high as 10 m3/tonne of coal. There are no official estimates for the magnitude of the CBNG resource in New Zealand but initial estimates suggest this could be up to 1,300 PJ with gas content ranging from 1 to 5 m3/tonne of coal. In Queensland, depressurization of the Walloon Coal Measures to recover CBNG has the potential to induce drawdown in adjacent deep aquifer systems through intraformational groundwater flow. In addition, CBNG operators have been disposing their co-produced water by using large unlined ponds, which is not the best practice for managing co-produced water. CBNG waters in Queensland have the typical geochemical signature associated with CBNG waters (Van Voast, 2003) and thus have the potential to impair soils and plant growth where land disposal is considered. Water quality from exploration wells in New Zealand exhibit the same characteristics although full scale production has not yet begun. In general, the environmental impacts that could arise from CBNG water extraction depend on the aquifer system, the quantity and quality of produced water, and on the method of treatment and disposal being used. Understanding these impacts is necessary to adequately manage CBNG waters so that environmental effects are minimized; if properly managed, CBNG waters can be used for beneficial applications and can become a valuable resource to stakeholders.
Resumo:
Coal seam gas (CSG) exploration and development requires the abstraction of significant amounts of water. This is so because gas desorbtion in coal seams takes place only after aquifer pressure has been reduced by prolonged pumping of aquifer water. CSG waters have a specific geochemical signature which is a product of their formation process. These waters have high bicarbonate, high sodium, low calcium, low magnesium, and very low sulphate concentrations. Additionally, chloride concentrations may be high depending on the coal depositional environment. This particular signature is not only useful for exploration purposes, but it also highlights potential environmental issues that can arise as a consequence of CSG water disposal. Since 2002 L&M Coal Seam Gas Ltd and CRL Energy Ltd, have been involved in exploration and development of CSG in New Zealand. Anticipating disposal of CSG waters as a key issue in CSG development, they have been assessing CSG water quality along with exploration work. Coal seam gas water samples from an exploration well in Maramarua closely follow the geochemical signature associated with CSG waters. This has helped to identify CSG potential, while at the same time assessing the chemical characteristics and water generation processes in the aquifer. Neutral pH and high alkalinity suggest that these waters could be easily managed once the sodium and chloride concentrations are reduced to acceptable levels.
Resumo:
ASWEC is a joint conference of Engineers Australia and the Australian Computer Society reporting through the Engineers Australia/ACS Joint Board on Software Engineering.
Resumo:
On 12 June 2006, the lights went out in New Zealands largest city and major commercial centre, Auckland. Business was disrupted and many thousands of people inconvenienced. The unscheduled power cut was the latest in a series of electric power problems in New Zealand over the past decade. Attention turned to state-owned enterprise [SOE] Transpower, which was in charge of maintaining and developing New Zealands national electricity grid. The problem of 12 June was traced to two shackles in poor condition, small but essential parts of the electricity grid infrastructure. Closer examination of New Zealands electricity sector indicated these shackles were merely the tip of a power supply iceberg. Transpower’s Chief Executive, Ralph Craven, was now answerable to the Prime Minister for the issues creating the problems, and a workable solution to fix them. Transpower Chief Executive Ralph Craven needed to produce answers that went well beyond the problem of the two faulty shackles. The power crisis had brought to the fore wider issues of roles, responsibilities, and expectations in relation to the supply of electric power in New Zealand. Transpower was contending with these issues on a daily basis; however, the incident on 12 June publicly highlighted the urgent need for solutions that served the stakeholders in this critical industry.
Resumo:
The concept of strategic entrepreneurship has received increased attention over the past ten yeras. Viewed as the intersection of entrepreneurship and strategy this field of research is populated by conceptual studies which focus mainly on the nature and perceived benefits of strategic entrepreneurship. Similarly the study of entrepreneurship in a public sector context has gained increasing support in recent years but also remains underexplored. To address these gaps this thesis considers : what are the underlying elements and financial implications of strategic entrepreneurship in New Zealand's state-owned enterprises, New Zealand's SOE sector comprising 17 government-owned,commercially focused organisations, is considered to be a prime subject for this research. Well known for their implementation of new public management, many New Zealand SOEs have also been publicly recognised as both innovative and entrepreneurial. The research question is addressed by first developing a preliminary framework of strategic entrepreneurship from literature on entrepreneurhsip and strategy. The framework is then examined in the context of case studies on activity.
Resumo:
This paper raises the question of whether comparative national models of communications research can be developed, along the lines of Hallin and Mancini’s (2004) analysis of comparative media policy, or the work of Perraton and Clift (2004) on comparative national capitalisms. Taking consideration of communications research in Australia and New Zealand as its starting point, the paper will consider what are relevant variables in shaping an “intellectual milieu” for communications research in these countries, as compared to those of Europe, North America and Asia. Some possibly relevant variables include: • Type of media system (e.g. how significant is public service media?); • Political culture (e.g. are there significant left-of-centre political parties?); • Dominant intellectual traditions; • Level and types of research funding; • Overall structure of higher education system, and where communications sits within it. In considering whether such an exercise can or should be undertaken, we can also evaluate, as Hallin and Mancini do, the significance of potentially homogenizing forces. These would include globalization, new media technologies, and the rise of a global “audit culture”. The paper will raise these issues as questions that emerge as we consider, as Curran and Park (2000) and Thussu (2009) have proposed, what a “de-Westernized” media and communications research paradigm may look like.
Resumo:
Many fashion businesses in New Zealand have followed a global trend towards inexpensive off shore manufacturing. The transfer of the production of garments to overseas workers has had consequences for the wellbeing of local businesses, fashion designers and garment makers. The gradual decline of fashion manufacturing also appears to have resulted in a local fashion scene where many garments look the same in style, colour, fabric, cut and fit. The excitement of the past, where the majority of fashion designers established their own individuality through the cut and shape of the garments that they produced, may have been inadvertently lost in an effort to take advantage of cost savings achieved through mass production and manufacturing methods which are now largely unavailable in New Zealand. Consequently, a sustainable local fashion and manufacturing industry, with design integrity, seems further out of reach. This paper is focussed upon the thesis that the design and manufacture of a fashion garment, bearing in mind certain economic and practical restrictions at its inception, can contribute to a more sustainable fashion manufacturing industry in New Zealand.
Resumo:
Pipe insulation between the collector and storage tank on pumped storage (commonly called split), solar water heaters can be subject to high temperatures, with a maximum equal to the collector stagnation temperature. The frequency of occurrence of these temperatures is dependent on many factors including climate, hot water demand, system size and efficiency. This paper outlines the findings of a computer modelling study to quantify the frequency of occurrence of pipe temperatures of 80 degrees Celsius or greater at the outlet of the collectors for these systems. This study will help insulation suppliers determine the suitability of their materials for this application. The TRNSYS program was used to model the performance of a common size of domestic split solar system, using both flat plate and evacuated tube, selective surface collectors. Each system was modelled at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 - Heat Water Systems - Calculation of energy consumption, and the ORER RECs calculation method. TRNSYS was used to predict the frequency of occurrence of the temperatures that the pipe insulation would be exposed to over an average year, for hot water consumption patterns specified in AS/NZS4234, and for worst case conditions in each of the climate zones. The results show; * For selectively surfaced, flat plate collectors in the hottest location (Alice Sprints) with a medium size hot water demand according to AS/NZS2434, the annual frequency of occurrence of temperatures at and above 80 degrees Celsius was 33 hours. The frequency of temperatures at and above 140 degrees Celsius was insignificant. * For evacuated tube collectors in the hottest location (Alice Springs), the annual frequency of temperatures at and above 80 degrees Celsius was 50 hours. Temperatures at and above 140 degrees Celsius were significant and were estimated to occur for more than 21 hours per year in this climate zone. Even in Melbourne, temperatures at and above 80 degrees can occur for 12 hours per year and at and above 140 degrees for 5 hours per year. * The worst case identified was for evacuated tube collectors in Alice Springs, with mostly afternoon loads in January. Under these conditions, the frequency of temperatures at and above 80 degrees Celsius was 10 hours for this month only. Temperatures at and above 140 degrees Celsius were predicted to occur for 5 hours in January.
Resumo:
Appropriate pipe insulation on domestic, pumped storage (split), solar water heating systems forms an integral part of energy conservation measures of well engineered systems. However, its importance over the life of the system is often overlooked. This study outlines the findings of computer modelling to quantify the energy and cost savings by using pipe insulation between the collector and storage tank. System sizes of 270 Litre storage tank, together with either selectively surfaced, flat plate collectors (4m2 area), or 30 evacuated tube collectors, were used. Insulation thicknesses of 13mm and 15mm, pipe runs both ways of 10, 15 and 20 metres and both electric and gas boosting of systems were all considered. The TRNSYS program was used to model the system performance at a representative city in each of the 6 climate zones for Australia and New Zealand, according to AS/NZS4234 – Heat Water Systems – Calculation of energy consumption and the ORER RECs calculation method. The results show: Energy savings from pipe insulation are very significant, even in mild climates such as Rockhampton. Across all climates zones, savings ranged from 0.16 to 3.5GJ per system per year, or about 2 to 23 percent of the annual load. There is very little advantage in increasing the insulation thickness from 13 to 15mm. For electricity at 19c/kWh and gas at 2 c/MJ, cost savings of between $27 and $100 per year are achieved across the climate zones. Both energy and cost savings would increase in colder climates with increased system size, solar contribution and water temperatures. The pipe insulation substantially improves the solar contribution (or fraction) and Renewable Energy Certificates (RECs), as well as giving small savings in circulating pump running costs in milder climates. Solar contribution increased by up to 23 percent points and RECs by over 7 in some cases. The study highlights the need to install and maintain the integrity of appropriate pipe insulation on solar water heaters over their life time in Australia and New Zealand.