965 resultados para Neutron


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We reanalyze the decay mode of Lambda hypernuclei induced by two nucleons modifying previous numerical results and the interpretation of the process. The repercussions of this channel in the ratio of neutron to proton induced Lambda decay is studied in detail in connection with the present experimental data. This leads to ratios that are in greater contradiction with usual one pion exchange models than those deduced before.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction has been used to study in situ the nanocrystallization process of Fe73.5Cu1Nb3Si22.5-xBx (x = 5, 9, and 12) amorphous alloys. Nanocrystallization results in a decrease of both the silicon content and the grain size of the Fe(Si) phase with increasing value of x. By comparing the radial distribution function peak areas with those predicted for ideal bcc and DO3 structure, it can be concluded that the ordering in DO3 Fe(Si) crystals increases with the silicon content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study whether the neutron skin thickness Δrnp of 208Pb originates from the bulk or from the surface of the nucleon density distributions, according to the mean-field models of nuclear structure, and find that it depends on the stiffness of the nuclear symmetry energy. The bulk contribution to Δrnp arises from an extended sharp radius of neutrons, whereas the surface contribution arises from different widths of the neutron and proton surfaces. Nuclear models where the symmetry energy is stiff, as typical of relativistic models, predict a bulk contribution in Δrnp of 208Pb about twice as large as the surface contribution. In contrast, models with a soft symmetry energy like common nonrelativistic models predict that Δrnp of 208Pb is divided similarly into bulk and surface parts. Indeed, if the symmetry energy is supersoft, the surface contribution becomes dominant. We note that the linear correlation of Δrnp of 208Pb with the density derivative of the nuclear symmetry energy arises from the bulk part of Δrnp. We also note that most models predict a mixed-type (between halo and skin) neutron distribution for 208Pb. Although the halo-type limit is actually found in the models with a supersoft symmetry energy, the skin-type limit is not supported by any mean-field model. Finally, we compute parity-violating electron scattering in the conditions of the 208Pb parity radius experiment (PREX) and obtain a pocket formula for the parity-violating asymmetry in terms of the parameters that characterize the shape of the 208Pb nucleon densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the influence of the density dependence of the symmetry energy on the average excitation energy of the isoscalar giant monopole resonance (GMR) in stable and exotic neutron-rich nuclei by applying the relativistic extended Thomas-Fermi method in scaling and constrained calculations. For the effective nuclear interaction, we employ the relativistic mean field model supplemented by an isoscalar-isovector meson coupling that allows one to modify the density dependence of the symmetry energy without compromising the success of the model for binding energies and charge radii. The semiclassical estimates of the average energy of the GMR are known to be in good agreement with the results obtained in full RPA calculations. The present analysis is performed along the Pb and Zr isotopic chains. In the scaling calculations, the excitation energy is larger when the symmetry energy is softer. The same happens in the constrained calculations for nuclei with small and moderate neutron excess. However, for nuclei of large isospin the constrained excitation energy becomes smaller in models having a soft symmetry energy. This effect is mainly due to the presence of loosely-bound outer neutrons in these isotopes. A sharp increase of the estimated width of the resonance is found in largely neutron-rich isotopes, even for heavy nuclei, which is enhanced when the symmetry energy of the model is soft. The results indicate that at large neutron numbers the structure of the low-energy region of the GMR strength distribution changes considerably with the density dependence of the nuclear symmetry energy, which may be worthy of further characterization in RPA calculations of the response function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Comment on the Letter by Ubaldo Bafile, et al., Phys. Rev. Lett. 86, 1019 (2001). The authors of the Letter offer a Reply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Majolica pottery is one of the most characteristic tableware produced during the Medieval and Renaissance periods. Majolica technology was introduced to the Iberian Peninsula by Islamic artisans during Medieval times, and its production and popularity rapidly spread throughout Spain and eventually to other locations in Europe and the Americas. The prestige and importance of Spanish majolica was very high. Consequently, this ware was imported profusely to the Americas during the Spanish Colonial period. Nowadays, Majolica pottery serves as an important horizon marker at Spanish colonial sites. A preliminary study of Spanish-produced majolica was conducted on a set of 246 samples from the 12 primary majolica production centers on the Iberian Peninsula. The samples were analyzed by neutron activation analysis (NAA), and the resulting data were interpreted using an array of multivariate statistical procedures. Our results show a clear discrimination between different production centers. In some cases, our data allow one to distinguish amongst shards coming from the same production location suggesting different workshops or group of workshops were responsible for production of this pre-industrial pottery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the neutron skin thickness in finite nuclei with the droplet model and effective nuclear interactions. The ratio of the bulk symmetry energy J to the so-called surface stiffness coefficient Q has in the droplet model a prominent role in driving the size of neutron skins. We present a correlation between the density derivative of the nuclear symmetry energy at saturation and the J/Q ratio. We emphasize the role of the surface widths of the neutron and proton density profiles in the calculation of the neutron skin thickness when one uses realistic mean-field effective interactions. Next, taking as experimental baseline the neutron skin sizes measured in 26 antiprotonic atoms along the mass table, we explore constraints arising from neutron skins on the value of the J/Q ratio. The results favor a relatively soft symmetry energy at subsaturation densities. Our predictions are compared with the recent constraints derived from other experimental observables. Though the various extractions predict different ranges of values, one finds a narrow window L∼45-75 MeV for the coefficient L that characterizes the density derivative of the symmetry energy that is compatible with all the different empirical indications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The saturation properties of neutron-rich matter are investigated in a relativistic mean-field formalism using two accurately calibrated models: NL3 and FSUGold. The saturation properties density, binding energy per nucleon, and incompressibility coefficient are calculated as a function of the neutron-proton asymmetry α≡(N-Z)/A to all orders in α. Good agreement (at the 10% level or better) is found between these numerical calculations and analytic expansions that are given in terms of a handful of bulk parameters determined at saturation density. Using insights developed from the analytic approach and a general expression for the incompressibility coefficient of infinite neutron-rich matter, i.e., K0(α)=K0+Kτα2+ , we construct a hybrid model with values for K0 and Kτ as suggested by recent experimental findings. Whereas the hybrid model provides a better description of the measured distribution of isoscalar monopole strength in the Sn isotopes relative to both NL3 and FSUGold, it significantly underestimates the distribution of strength in 208Pb. Thus, we conclude that the incompressibility coefficient of neutron-rich matter remains an important open problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a relation between the symmetry energy coefficients csym(ρ) of nuclear matter and asym(A) of finite nuclei that accommodates other correlations of nuclear properties with the low-density behavior of csym(ρ). Here, we take advantage of this relation to explore the prospects for constraining csym(ρ) of systematic measurements of neutron skin sizes across the mass table, using as example present data from antiprotonic atoms. The found constraints from neutron skins are in harmony with the recent determinations from reactions and giant resonances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge ordered La1/3Sr2/3FeO3−δ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M¨ossbauer, and polarized neutron studies. A complex scenario of short-range charge and magnetic ordering is realized from the polarized neutron studies in nanocrystalline specimen. This short-range ordering does not involve any change in spin state and modification in the charge disproportion between Fe3+ and Fe5+ compared to bulk counterpart as evident in the M¨ossbauer results. The refinement of magnetic diffraction peaks provides magnetic moments of Fe3+ and Fe5+ are about 3.15 μB and 1.57 μB for bulk, and 2.7 μB and 0.53 μB for nanocrystalline specimen, respectively. The destabilization of charge ordering leads to magnetic phase separation, giving rise to the robust exchange bias (EB) effect. Strikingly, EB field at 5 K attains a value as high as 4.4 kOe for average size ∼70 nm, which is zero for the bulk counterpart. A strong frequency dependence of ac susceptibility reveals cluster-glass-like transition around ∼65 K, below which EB appears. Overall results propose that finite-size effect directs the complex glassy magnetic behavior driven by unconventional short-range charge and magnetic ordering, and magnetic phase separation appears in nanocrystalline LSFO.