945 resultados para Neuropeptide S. Locomotor activity. Dopamine. Mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was conducted to investigate the influence of restricted food access on Solea senegalensis behaviour and daily expression of clock genes in central (diencephalon and optic tectum) and pheripheral (liver) tissues. The Senegalese sole is a marine teleost fish belonging to the Class of Actinopterygii, Order Pleuronectiformes and Family Soleidae. Its geographical distribution in the Mediterranean sea is fairly broad, covering the south and east of the Iberian Peninsula, the North of Africa and Middle East until the coast of Turkey. From a commercial perspective Solea senegalensis has acquired in recent years, a key role in aquacolture industry of the Iberian Peninsula. The Senegalese sole is also acquiring an important relevance in chronobiological studies as the number of published works focused on the sole circadian system has increased in the last few years. The molecular mechanisms underlying sole circadian rhythms has also been explored recently, both in adults and developing sole. Moreover, the consideration of the Pleuronectiformes Order as one of the most evolved teleost groups make the Senegalese sole a species of high interest under a comparative and phylogenetic point of view. All these facts have reinforced the election of Senegalese sole as model species for the present study. The animals were kept under 12L:12D photoperiod conditions and divided into three experimental groups depending on the feeding time: fed at midlight (ML), middark (MD) or random (RND) times. Throughout the experiment, the existence of a daily activity rhythm and it synchronization to the light-dark and feeding cycles was checked. To this end locomotor activity was registred by means of two infrared photocells placed in pvc tube 10 cm below the water surface (upper photocell) and the other one was located 10 cm above the bottom of the tank (bottom photocell). The photocell were connected to a computer so that every time a fish interrupted the infrared light beam, it produced an output signal that was recorded. The number of light beam interruptions was stored every 10 minutes by specialized software for data acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central focus of invasion biology is to identify the traits that predict which introduced species will become invasive. Behavioral traits related to locomotor activity most likely play a pivotal role in determining a specie€™invasion success but have rarely been studied, particularly in terrestrial invertebrates. Here, we experimentally investigated the small-scale locomotor activity of two slug species with divergent invasion success in Europe, the highly invasive slug, Arion lusitanicus, and the closely related, non-invasive and native slug, Arion rufus. To do so, we used a multi-state capture-mark-recapture approach, and hypothesized that the invasive slug has a higher moving rate (keeps on moving) and leaving rate (leaves more frequently known places). A total of 221 invasive and 241 non-invasive slugs were individually marked using magnetic transponders and released in three study sites differing in habitat type. The slugs were recaptured using shelter traps, and moving and leaving rates were estimated. Both rates were significantly higher for the invasive slug, demonstrating a higher locomotor activity which might partly explain its invasion success. Our results provide evidence for the recently suggested idea that locomotor activity might be an important trait underlying animal invasions using for the first time terrestrial invertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscarinic acetylcholine receptors are members of the G protein-coupled receptor superfamily expressed in neurons, cardiomyocytes, smooth muscle, and a variety of epithelia. Five subtypes of muscarinic acetylcholine receptors have been discovered by molecular cloning, but their pharmacological similarities and frequent colocalization make it difficult to assign functional roles for individual subtypes in specific neuronal responses. We have used gene targeting by homologous recombination in embryonic stem cells to produce mice lacking the m1 receptor. These mice show no obvious behavioral or histological defects, and the m2, m3, and m4 receptors continue to be expressed in brain with no evidence of compensatory induction. However, the robust suppression of the M-current potassium channel activity evoked by muscarinic agonists in sympathetic ganglion neurons is completely lost in m1 mutant mice. In addition, both homozygous and heterozygous mutant mice are highly resistant to the seizures produced by systemic administration of the muscarinic agonist pilocarpine. Thus, the m1 receptor subtype mediates M current modulation in sympathetic neurons and induction of seizure activity in the pilocarpine model of epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To elucidate the role of neuropeptide Y (NPY)-Y1 receptor (Y1-R) in food intake, energy expenditure, and other possible functions, we have generated Y1-R-deficient mice (Y1-R−/−) by gene targeting. Contrary to our hypothesis that the lack of NPY signaling via Y1-R would result in impaired feeding and weight loss, Y1-R−/− mice showed a moderate obesity and mild hyperinsulinemia without hyperphagia. Although there was some variation between males and females, typical characteristics of Y1-R−/− mice include: greater body weight (females more than males), an increase in the weight of white adipose tissue (WAT) (approximately 4-fold in females), an elevated basal level of plasma insulin (approximately 2-fold), impaired insulin secretion in response to glucose administration, and a significant changes in mitochondrial uncoupling protein (UCP) gene expression (up-regulation of UCP1 in brown adipose tissue and down-regulation of UCP2 in WAT). These results suggest either that the Y1-R in the hypothalamus is not a key molecule in the leptin/NPY pathway, which controls feeding behavior, or that its deficiency is compensated by other receptors, such as NPY-Y5 receptor. We believe that the mild obesity found in Y1-R−/− mice (especially females) was caused by the impaired control of insulin secretion and/or low energy expenditure, including the lowered expression of UCP2 in WAT. This model will be useful for studying the mechanism of mild obesity and abnormal insulin metabolism in noninsulin-dependent diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bone marrow stromal cells (BMSCs) have the potential to improve functional recovery in patients with spinal cord injury (SCI); however, they are limited by low survival rates after transplantation in the injured tissue. Our objective was to clarify the effects of a temporal blockade of interleukin 6 (IL-6)/IL-6 receptor (IL-6R) engagement using an anti-mouse IL-6R monoclonal antibody (MR16-1) on the survival rate of BMSCs after their transplantation in a mouse model of contusion SCI. MR16-1 cotreatment improved the survival rate of transplanted BMSCs, allowing some BMSCs to differentiate into neurons and astrocytes, and improved locomotor function recovery compared with BMSC transplantation or MR16-1 treatment alone. The death of transplanted BMSCs could be mainly related to apoptosis rather than necrosis. Transplantation of BMSC with cotreatment of MR16-1 was associated with a decrease of some proinflammatory cytokines, an increase of neurotrophic factors, decreased apoptosis rates of transplanted BMSCs, and enhanced expression of survival factors Akt and extracellular signal-regulated protein kinases 1/2. We conclude that MR16-1 treatment combined with BMSC transplants helped rescue neuronal cells and axons after contusion SCI better than BMSCs alone by modulating the inflammatory/immune responses and decreasing apoptosis. © 2013 by the American Association of Neuropathologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de £o Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T-cell derived cytokine CD40 ligand is overexpressed in patients with autoimmune diseases. Through activation of its receptor, CD40 ligand leads to a tumor necrosis factor (TNF) receptor 1 (TNFR1) dependent impairment of locomotor activity in mice. Here we report that this effect is explained through a promotion of sleep, which was specific to non-rapid eye movement (NREM) sleep while REM sleep was suppressed. The increase in NREM sleep was accompanied by a decrease in EEG delta power during NREM sleep and by a decrease in the expression of transcripts in the cerebral cortex known to be associated with homeostatic sleep drive, such as Homer1a, Early growth response 2, Neuronal pentraxin 2, and Fos-like antigen 2. The effect of CD40 activation was mimicked by peripheral TNF injection and prevented by the TNF blocker etanercept. Our study indicates that sleep-wake dysregulation in autoimmune diseases may result from CD40 induced TNF:TNFR1 mediated alterations of molecular pathways, which regulate sleep-wake behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While most effects of dopamine in the brain are mediated by the D1 and D2 receptor subtypes, other members of this G protein-coupled receptor family have potentially important functions. D3 receptors belong to the D2-like subclass of dopamine receptors, activation of which inhibits adenylyl cyclase. Using targeted mutagenesis in mouse embryonic stem cells, we have generated mice lacking functional D3 receptors. A premature chain-termination mutation was introduced in the D3 receptor gene after residue Arg-148 in the second intracellular loop of the predicted protein sequence. Binding of the dopamine antagonist [125I]iodosulpride to D3 receptors was absent in mice homozygous for the mutation and greatly reduced in heterozygous mice. Behavioral analysis of mutant mice showed that this mutation is associated with hyperactivity in an exploratory test. Homozygous mice lacking D3 receptors display increased locomotor activity and rearing behavior. Mice heterozygous for the D3 receptor mutation show similar, albeit less pronounced, behavioral alterations. Our findings indicate that D3 receptors play an inhibitory role in the control of certain behaviors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Menopause and premature gonadal steroid deficiency are associated with increases in fat mass and body weight. Ovariectomized (OVX) mice also show reduced locomotor activity. Glucose-dependent-insulinotropic-polypeptide (GIP) is known to play an important role both in fat metabolism and locomotor activity. Therefore, we hypothesized that the effects of estrogen on the regulation of body weight, fat mass, and spontaneous physical activity could be mediated in part by GIP signaling. To test this hypothesis, C57BL/6 mice and GIP-receptor knockout mice (Gipr(-/-)) were exposed to OVX or sham operation (n = 10 per group). The effects on body composition, markers of insulin resistance, energy expenditure, locomotor activity, and expression of hypothalamic anorexigenic and orexigenic factors were investigated over 26 wk in all four groups of mice. OVX wild-type mice developed obesity, increased fat mass, and elevated markers of insulin resistance as expected. This was completely prevented in OVX Gipr(-/-) animals, even though their energy expenditure and spontaneous locomotor activity levels did not significantly differ from those of OVX wild-type mice. Cumulative food intake in OVX Gipr(-/-) animals was significantly reduced and associated with significantly lower hypothalamic mRNA expression of the orexigenic neuropeptide Y (NPY) but not of cocaine-amphetamine-related transcript (CART), melanocortin receptors (MCR-3 and MCR-4), or thyrotropin-releasing hormone (TRH). GIP receptors thus interact with estrogens in the hypothalamic regulation of food intake in mice, and their blockade may carry promising potential for the prevention of obesity in gonadal steroid deficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certains neuropeptides (enképhaline et neurotensine) sont des modulateurs du système dopaminergique. Chez les rongeurs, le traitement avec l’antipsychotique typique halopéridol (antagoniste des récepteurs D2), augmente fortement leurs niveaux d’ARNm dans le striatum, une structure centrale du système dopaminergique qui contrôle l’activité locomotrice. Comme l’halopéridol est associé avec de nombreux effets secondaires moteurs, on peut penser que la modulation des neuropeptides est possiblement un mécanisme d’adaptation visant à rétablir l’homéostasie du système dopaminergique après le blocage des récepteurs D2. Cependant, le mécanisme moléculaire de cette régulation transcriptionnelle n’est pas bien compris. Nur77 est un facteur de transcription de la famille des récepteurs nucléaires orphelins qui agit en tant que gène d’induction précoce. Le niveau de son ARNm est aussi fortement augmenté dans le striatum suivant un traitement avec halopéridol. Plusieurs évidences nous suggèrent que Nur77 est impliqué dans la modulation transcriptionnelle des neuropeptides. Nur77 peut former des hétérodimères fonctionnels avec le récepteur rétinoïde X (RXR). En accord avec une activité transcriptionnelle d’un complexe Nur77/RXR, l’agoniste RXR (DHA) réduit tandis que l’antagoniste RXR (HX531) augmente les troubles moteurs induits par un traitement chronique à l’halopéridol chez les souris sauvages tandis que ces ligands pour RXR n’ont aucun effet chez les souris Nur77 nulles. Nos travaux ont révélé que l’antagoniste RXR (HX531) réduit l’augmentation des niveaux d’enképhaline suivant un traitement chronique avec l’halopéridol. Nous avons ensuite démontré la liaison in vitro de Nur77 sur un élément de réponse présent dans le promoteur proximal de la proenképhaline, le peptide précurseur de l’enképhaline. Ces résultats supportent l’hypothèse que Nur77, en combinaison avec RXR, pourrait participer à la régulation transcriptionnelle des neuropeptides dans le striatum et donc contribuer à la neuroadaptation du système dopaminergique suivant un traitement aux antipsychotiques typiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon; however, few studies have been designed to systematically investigate the effects of dopaminergic antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first tested the effects of D(1) antagonist SCH-23390 (0-0.03 mg/kg) or D(2) antagonist Sulpiride (0-30 mg/kg) on the locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the antagonists were effective in blocking ethanol`s stimulant effects. In another set of experiments, mice were pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this pretreatment, all mice were challenged with ethanol. Both antagonists attenuated the development of ethanol sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol. When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the concomitant administration of ethanol with D(1) but not D(2) antagonist prevented the expression of ethanol sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend preferentially on D(1) receptor actions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Repeated administration of low doses of ethanol gradually increases locomotor responses to ethanol in adult Swiss mice. This phenomenon is known as behavioral sensitization. However, we have shown that adolescent Swiss mice show either behavioral tolerance or no sensitization after repeated ethanol injections. Although the mesolimbic dopamine system has been extensively implicated in behavioral sensitization, several studies have demonstrated an important role of glutamatergic transmission in this phenomenon. In addition, relatively few studies have examined the role of developmental factors in behavioral sensitization to ethanol. To examine the relationship between age differences in behavioral sensitization to ethanol and the neurochemical adaptations related to glutamate within nucleus accumbens (NAc), in vivo microdialysis was conducted in adolescent and adult Swiss mice treated with ethanol (1.8 g/kg) or saline for 15 days and subsequently challenged with an acute dose (1.8 g/kg) of ethanol 6 days later. Consistent with previous findings, only adult mice demonstrated evidence of behavioral sensitization. However, ethanol-treated adolescent mice demonstrated a 196.1 +/- 40.0% peak increase in extracellular levels of glutamate in the NAc after ethanol challenge in comparison with the basal values, whereas ethanol-treated adult mice demonstrated a 52.2 +/- 6.2% reduction in extracellular levels of glutamate in the NAc after ethanol challenge. These observations suggest an age-dependent inverse relationship between behavioral and glutamatergic responses to repeated ethanol exposure. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2)), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 +/- 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 +/- 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 -[phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 +/- 0.03 h) and a long-period component (23.93 +/- 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 +/- 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abnormal dopaminergic transmission is implicated in schizophrenia, attention deficit hyperactivity disorder, and drug addiction. In an attempt to model aspects of these disorders, we have generated hyperdopaminergic mutant mice by reducing expression of the dopamine transporter (DAT) to 10% of wild-type levels (DAT knockdown). Fast-scan cyclic voltammetry and in vivo microdialysis revealed that released dopamine was cleared at a slow rate in knockdown mice, which resulted in a higher extracellular dopamine concentration. Unlike the DAT knockout mice, the DAT knockdown mice do not display a growth retardation phenotype. They have normal home cage activity but display hyperactivity and impaired response habituation in novel environments. In addition, we show that both the indirect dopamine receptor agonist amphetamine and the direct agonists apomorphine and quinpirole inhibit locomotor activity in the DAT knockdown mice, leading to the hypothesis that a shift in the balance between dopamine auto and heteroreceptor function may contribute to the therapeutic effect of psychostimulants in attention deficit hyperactivity disorder.