997 resultados para Neuroendocrine cell
Resumo:
Physical and psychological stress cause different patterns of changes in the fluorescence intensity of nigral and tuberoinfundibular DA neurons which point to changes in neuronal activity. In order to investigate possible interactions between alpha-MSH (alpha-melanotropin) and DA systems in stress, systemic and intraventricular injections of antiserum against alpha-MSH were made. The functional state of DA neurons was assessed by histochemical microfluorimetry and hormone levels were measured by radioimmunossay. Antiserum against alpha-MSH was found to affect the functional state of DA neurons, but only thorugh the intravenous route. Under physical stress i.v. injection of antiserum against alpha-MSH was accompanied by elevated levels of activity of the DA neurons of the substantia nigra. An intraventricular injection of the same antiserum was ineffective. In psychological stress, an effect was again seen only after intravenous injection of antiserum against alpha-MSH. In this situation, the activity in DA cell groups of the substantia nigra, ventral tegmental area and tubero-infundibular system was increased after antiserum injection. Possible influences from manipulations were checked; certain effects which depended upon experimental situation were noted. Our data suggest a modulatory influence of circulating alpha-MSH on the functional state of central DA systems.
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Malignancy of pulmonary large cell carcinomas (LCC) increases from classic LCC through LCC with neuroendocrine morphology (LCCNM) to large cell neuroendocrine carcinomas (LCNEC). However, the histological classification has sometimes proved to be difficult. Because the malignancy of LCC is highly dependent on proteins with functions in the cell cycle, DNA repair, and apoptosis, p53 has been targeted as a potentially useful biological marker. p53 mutations in lung cancers have been shown to result in expression and protein expression also occurs in the absence of mutations. To validate the importance of both p53 protein expression (by immunostaining) and p53 gene mutations in lung LCC (by PCR-single strand conformational polymorphism analysis of exons 5, 6, 7, and 8) and to study their relationships with clinical factors and sub-classification we investigated the correlation of p53 abnormalities in 15 patients with LCC (5 classic LCC, 5 LCNEC, and 5 LCCNM) who had undergone resection with curative intent. Of these patients, 5/15 expressed p53 and none had mutant p53 sequences. There was a negative survival correlation with positive p53 immunostaining (P = 0.05). After adjustment for stage, age, gender, chemotherapy, radiotherapy, and histological subtypes by multivariate analysis, p53 expression had an independent impact on survival. The present study indicates that p53 assessment may provide an objective marker for the prognosis of LCC irrespective of morphological variants and suggests that p53 expression is important for outcome prediction in patients with the early stages of LCC. The results reported here should be considered to be initial results because tumors from only 15 patients were studied: 5 each from LCC, LCNEC and LCCNM. This was due to the rarity of these specific diseases.
Resumo:
Expression of estrogen (ER) and progesterone (PR) receptors has traditionally been associated with hormone-responsive organs, such as breast, ovary, and endometrium, and carcinomas arising therefrom. More recently, examples of ''unexpected'' ER or PR expression have been reported, particularly in tumors of endocrine tissues, such as thyroid and pancreatic islet cells. We tested the hypothesis that neuroendocrine tumors of various primary and metastatic sites might also express ER or PR or both by performing a retrospective immunohistochemical study in a series of 59 formalin- or mechacarn-fixed neuroendocrine carcinomas of various sites, including lung, skin, gastrointestinal and female genital tracts, and including carcinoid and atypical carcinoid tumors, small cell carcinomas, and Merkel cell carcinomas. We employed the anti-ER monoclonal antibody 1D5 and the anti-PR monoclonal antibody PgR1A6 using standard immunohistochemical techniques after microwave-based heat-induced epitope retrieval. Two of 28 carcinoid tumors demonstrated ER positivity; six of 30 cases were positive for progesterone receptor only. In addition, PR expression was found in one of two cases of atypical carcinoid, in five of 25 cases of small cell carcinoma, and in one of two cases of Merkel cell carcinoma. None of the atypical carcinoids, small cell carcinomas, or Merkel cell carcinomas were ER positive. In most cases, the fraction of tumor cell nuclei that were positive was <50%. These studies add the spectrum of neuroendocrine tumors that can express these hormone receptors. Similar to the pattern previously described in the subsets of meningiomas and islet cell tumors, PR but not ER is detectable in most cases. These results underscore the caution that should be exercised in determining tissue origin of metastatic carcinomas based only on detection of hormone receptors by immunohistochemistry.
Resumo:
The pathological finding of testicular metastasis in cases of disseminated prostatic adenocarcinoma is rare, but was more frequently reported in the past, when bilateral castration was performed more often. The existence of skin and subcutaneous metastasis adds a worse prognosis, because generally it is sign of advanced disease with an average survival time of less than one year. The synchronous occurrence of such metastasis has not been described previously, neither their association to neuroendocrine differentiation. The presence of such differentiation of prostatic adenocarcinoma represents a very unfavorable prognostic factor, as suggested in recent literature. Herein, we discuss the case of a 53 year old man, who presented with macroscopic hematuria and frequency associated to several painless subcutaneous nodules in left axilla and shoulder, as well as in the lower abdominal wall. The right testis was painful, endured and on rectal examination, the prostate was diffusely enlarged. Serum PSA was elevated, reaching 1760 ng/ml and prostatic biopsy disclosed a Gleason 10 prostatic adenocarcinoma with neuroendocrine differentiation. The same pathological pattern was detected in the right testis and in all subcutaneous nodules, documented by positive staining of chromogranin, a marker of neuroendocrine cells. He was submitted to a prostate tunnelization and maximal androgen blockade plus adjuvant chemotherapy, nevertheless, he died 5 months latter.
Internalized somatostatin receptor subtype 2 in neuroendocrine tumors of octreotide-treated patients
Resumo:
Somatostatin receptor subtype 2 (sst(2)) is widely expressed in neuroendocrine tumors and can be visualized immunohistochemically at the cell membrane for diagnostic purposes. Recently, it has been demonstrated in animal sst(2) tumor models in vivo that somatostatin analog treatment was able to induce a complete internalization of the tumor sst(2).
Resumo:
Somatostatin analogues, which are used to treat neuroendocrine tumors, target the high levels of somatostatin receptor subtype 2 (SSTR1; alias sst2) expressed in these cancers. However, some tumors are resistant to somatostatin analogues, and it is unknown whether the defect lies in sst2 activation or downstream signaling events. Because sst2 phosphorylation occurs rapidly after receptor activation, we examined whether sst2 is phosphorylated in neuroendocrine tumors. The sst2 receptor phosphorylation was evaluated by IHC and Western blot analysis with the new Ra-1124 antibody specific for the sst2 receptor phosphorylated at Ser341/343 in receptor-positive neuroendocrine tumors obtained from 10 octreotide-treated and 7 octreotide-naïve patients. The specificity, time course, and subcellular localization of sst2 receptor phosphorylation were examined in human embryo kinase-sst2 cell cultures by immunofluorescence and confocal microscopy. All seven octreotide-naïve tumors displayed exclusively nonphosphorylated cell surface sst2 expression. In contrast, 9 of the 10 octreotide-treated tumors contained phosphorylated sst2 that was predominantly internalized. Western blot analysis confirmed the IHC data. Octreotide treatment of human embryo kinase-sst2 cells in culture demonstrated that phosphorylated sst2 was localized at the plasma membrane after 10 seconds of stimulation and was subsequently internalized into endocytic vesicles. These data show, for the first time to our knowledge, that phosphorylated sst2 is present in most gastrointestinal neuroendocrine tumors from patients treated with octreotide but that a striking variability exists in the subcellular distribution of phosphorylated receptors among such tumors.
Resumo:
BACKGROUND: Familial isolated growth hormone deficiency (IGHD) is a disorder with about 5-30% of patients having affected relatives. Among those familial types, IGHD type II is an autosomal dominant form of short stature, associated in some families with mutations that result in missplicing to produce del32-71-GH, a GH peptide which cannot fold properly. The mechanism by which this mutant GH may alter the controlled secretory pathway and therefore suppress the secretion of the normal 22-kDa GH product of the normal allele is not known in detail. Previous studies have shown variance depending on cell type, transfection technique used, as well as on the method of analysis performed. AIM: The aim of our study was to analyse and compare the subcellular distribution/localization of del32-71-GH or wild-type (wt)-GH (22-kDa GH), each stably transfected into AtT-20, a mouse pituitary cell line endogenously producing ACTH, employed as the internal control for secretion assessment. METHODS: Colocalization of wt- and del32-71 mutant GH form was studied by quantitative confocal microscopy analysis. Using the immunofluorescent technique, cells were double stained for GH plus one of the following organelles: endoplasmic reticulum (ER anti-Grp94), Golgi (anti-betaCOP) or secretory granules (anti-Rab3a). In addition, GH secretion and cell viability were analysed in detail. RESULTS/CONCLUSIONS: Our results show that in AtT-20 neuroendocrine cells, in comparison to the wt-GH, the del32-71-GH has a major impact on the secretory pathway not only affecting GH but also other peptides such as ACTH. The del32-71-GH is still present at the secretory vesicles' level, albeit in reduced quantity when compared to wt-GH but, importantly, was secretion-deficient. Furthermore, while focusing on cell viability an additional finding presented that the various splice site mutations, even though leading eventually to the same end product, namely del32-71-GH, have different and specific consequences on cell viability and proliferation rate.
Resumo:
We describe a hitherto undocumented variant of dimorphic pituitary neoplasm composed of an admixture of neurosecretory cells and profuse leiomyomatous stroma around intratumoral vessels. Radiologically perceived as a macroadenoma of 3.8 cm in diameter, this pituitary mass developed in an otherwise healthy 43-year-old female. At the term of a yearlong history of amenorrhea and progressive bitemporal visual loss, subtotal resection was performed via transsphenoidal microsurgery. Discounting mild hyperprolactinemia, there was no evidence of excess hormone production. Histologically, solid sheets, nests and cords of epithelial-looking, yet cytokeratin-negative cells were seen growing in a richly vascularized stroma of spindle cells. While strong immunoreactivity for NCAM, Synaptophysin and Chromogranin-A was detected in the former, the latter showed both morphological and immunophenotypic hallmarks of smooth muscle, being positive for vimentin, muscle actin and smooth muscle actin. Architectural patterns varied from monomorphous stroma-dominant zones through biphasic neuroendocrine-leiomyomatous areas, to pseudopapillary fronds along vascular cores. Only endothelia were labeled with CD34. Staining for S100 protein and GFAP, characteristics of sustentacular cells, as well as bcl-2 and c-kit was absent. Except for alpha-subunit, anterior pituitary hormones tested negative in tumor cells, as did a panel of peripheral endocrine markers, including serotonin, somatostatin, calcitonin, parathormone and vasoactive intestinal polypeptide. Mitotic activity was absent and the MIB-1 labeling index low (1-2%). While assignment of this lesion to any established neoplastic entity is not forthcoming, we propose it is being considered as a low-grade neuroendocrine tumor possibly related to null cell adenoma.
Resumo:
Spindle cell oncocytoma (SCO) is a recently described, rare neoplasm of the anterior pituitary. Clinically and radiologically simulating a non-functioning macroadenoma, its eponymous fusiform cells display a non-epithelial phenotype with conspicuous cytoplasmic accumulation of mitochondria. We report a case of SCO retrospectively identified in a biopsy specimen 16 years after transsphenoidal operation of a 48-year-old woman. Presenting symptoms were adynamia and transient decrease of visual acuity. Neuroimaging showed an isointense, enhancing, sellar-centered mass 1.8 cm in diameter without evidence of invasive growth. No postoperative adjuvant therapy was administered. The patient was left with panhypopituitarism, yet no recurrence was seen during follow-up. Initially diagnosed as a null cell adenoma of oncocytic type, repeat immunohistochemistry showed the characteristic coexpression of S100 protein, vimentin, and epithelial membrane antigen. Oncocytic granula stained intensely with antimitochondrial antibody 113-1, and were negative with the lysosomal marker CD68. Anterior pituitary hormones tested negative, and there was no evidence of neuroendocrine differentiation using antibodies to synaptophysin and chromogranin. Few cells stained for glial fibrillary acidic protein (GFAP). SCO has been proposed to represent a neoplasm of folliculo-stellate cells (FSCs). While the dynamic properties of the latter are incompletely characterized, and indeed no specific marker allows for their identification, overlapping features of SCO with look alikes, in particular pituicytoma, point to FSCs being a potential adult stem cell. The favorable outcome of the present case further argues for SCO to be considered a low-grade neoplasm. Moderate tumor size, lack of invasiveness, and low proliferation rate are likely predictors of benign behavior.
Resumo:
The extracellular matrix molecule tenascin-C (TNC) is a major component of the cancer-specific matrix, and high TNC expression is linked to poor prognosis in several cancers. To provide a comprehensive understanding of TNC's functions in cancer, we established an immune-competent transgenic mouse model of pancreatic β-cell carcinogenesis with varying levels of TNC expression and compared stochastic neuroendocrine tumor formation in abundance or absence of TNC. We show that TNC promotes tumor cell survival, the angiogenic switch, more and leaky vessels, carcinoma progression, and lung micrometastasis. TNC downregulates Dickkopf-1 (DKK1) promoter activity through the blocking of actin stress fiber formation, activates Wnt signaling, and induces Wnt target genes in tumor and endothelial cells. Our results implicate DKK1 downregulation as an important mechanism underlying TNC-enhanced tumor progression through the provision of a proangiogenic tumor microenvironment.
Resumo:
The human insulin gene enhancer-binding protein islet-1 (ISL1) is a transcription factor involved in the differentiation of the neuroendocrine pancreatic cells. Recent studies identified ISL1 as a marker for pancreatic well-differentiated neuroendocrine neoplasms. However, little is known about ISL1 expression in pancreatic poorly differentiated and in extrapancreatic well and poorly differentiated neuroendocrine neoplasms. We studied the immunohistochemical expression of ISL1 in 124 neuroendocrine neoplasms. Among pancreatic neuroendocrine neoplasms, 12/13 with poor differentiation were negative, whereas 5/7 with good differentiation but a Ki67 >20% were positive. In extrapancreatic neuroendocrine neoplasms, strong positivity was found in Merkel cell carcinomas (25/25), pulmonary small cell neuroendocrine carcinomas (21/23), medullary thyroid carcinomas (9/9), paragangliomas/pheochromocytomas (6/6), adrenal neuroblastomas (8/8) and head and neck neuroendocrine carcinomas (4/5), whereas no or only weak staining was recorded in pulmonary carcinoids (3/15), olfactory neuroblastomas (1/4) and basaloid head and neck squamous cell carcinomas (0/15). ISL1 stained the neuroendocrine carcinoma component of 5/8 composite carcinomas and also normal neuroendocrine cells in the thyroid, adrenal medulla, stomach and colorectum. Poorly differentiated neuroendocrine neoplasms, regardless of their ISL1 expression, were usually TP53 positive. Our results show the almost ubiquitous expression of ISL1 in extrapancreatic poorly differentiated neuroendocrine neoplasms and neuroblastic malignancies and its common loss in pancreatic poorly differentiated neuroendocrine neoplasms. These findings modify the role of ISL1 as a marker for pancreatic neuroendocrine neoplasms and suggest that ISL1 has a broader involvement in differentiation and growth of neuroendocrine neoplasms than has so far been assumed.
Resumo:
A new family of peptide receptors, the incretin receptor family, overexpressed on many neuroendocrine tumors (NETs) is of great importance because it may enable the in vivo peptide-based receptor targeting of a category of NETs that does not express the somatostatin receptor. Impressive in vivo diagnostic data were published for glucagonlike peptide 1 receptor-targeting radiopeptides. Recently, promising in vitro data have appeared for the second member of the incretin family, the glucose-dependent insulinotropic polypeptide (GIP) receptor. This prompted us to develop and evaluate a new class of radioligands with the potential to be used for the in vivo targeting of GIP receptor-positive tumors. METHODS GIP(1-42) was modified C-terminally, and the truncated peptides [Lys(30)(aminohexanoic acid [Ahx]-DOTA)]GIP(1-30)NH2 (EG1), [Lys(16)(Ahx-DOTA)]GIP(1-30)NH2 (EG2), and [Nle(14), Lys(30)(Ahx-DOTA)]GIP(1-30)NH2 (EG4) were conjugated with Ahx-DOTA via the Lys(16) and Lys(30) side chains. Their inhibitory concentration of 50% (IC50) was determined using [(125)I-Tyr(10)]GIP(1-30) as radioligand and GIP(1-30) as control peptide. The DOTA conjugates were labeled with (111)In and (68)Ga. In vitro evaluation included saturation and internalization studies using the pancreatic endocrine cell line INR1G9 transfected with the human GIP receptor (INR1G9-hGIPr). The in vivo evaluation consisted of biodistribution and PET imaging studies on nude mice bearing INR1G9-hGIPr tumors. RESULTS Binding studies (IC50 and saturation studies) showed high affinity toward GIP receptor for the GIP conjugates. Specific in vitro internalization was found, and almost the entire cell-associated activity was internalized (>90% of the cell-bound activity), supporting the agonist potency of the (111)In-vectors. (111)In-EG4 and (68)Ga-EG4 were shown to specifically target INR1G9-hGIPr xenografts, with tumor uptake of 10.4% ± 2.2% and 17.0% ± 4.4% injected activity/g, 1 h after injection, respectively. Kidneys showed the highest uptake, which could be reduced by approximately 40%-50% with a modified-fluid-gelatin plasma substitute or an inhibitor of the serine protease dipeptidyl peptidase 4. The PET images clearly visualized the tumor. CONCLUSION The evaluation of EG4 as a proof-of-principle radioligand indicated the feasibility of imaging GIP receptor-positive tumors. These results prompt us to continue the development of this family of radioligands for imaging of a broad spectrum of NETs.
Resumo:
BACKGROUND Neuroendocrine tumors are well vascularized and express specific cell surface markers, such as somatostatin receptors and the glucagon-like peptide-1 receptor (GLP-1R). Using the Rip1Tag2 transgenic mouse model of pancreatic neuroendocrine tumors (pNET), we have investigated the potential benefit of a combination of anti-angiogenic treatment with targeted internal radiotherapy. METHODS [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, a radiopeptide that selectively binds to GLP-1R expressed on insulinoma and other neuroendocrine tumor cells, was co-administered with oral vatalanib (an inhibitor of vascular endothelial growth factor receptors (VEGFR)) or imatinib (a c-kit/PDGFR inhibitor). The control groups included single-agent kinase inhibitor treatments and [Lys40(Ahx-DTPA-natIn)NH2]-exendin-4 monotherapy. For biodistribution, Rip1Tag2 mice were pre-treated with oral vatalanib or imatinib for 0, 3, 5, or 7 days at a dose of 100 mg/kg. Subsequently, [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 was administered i.v., and the biodistribution was assessed after 4 h. For therapy, the mice were injected with 1.1 MBq [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and treated with vatalanib or imatinib 100 mg/kg orally for another 7 days. Tumor volume, tumor cell apoptosis and proliferation, and microvessel density were quantified. RESULTS Combination of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 and vatalanib was significantly more effective than single treatments (p < 0.05) and reduced the tumor volume by 97% in the absence of organ damage. The pre-treatment of mice with vatalanib led to a reduction in the tumor uptake of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4, indicating that concomitant administration of vatalanib and the radiopeptide was the best approach. Imatinib did not show a synergistic effect with [Lys40(Ahx-DTPA-111In)NH2]-exendin-4. CONCLUSION The combination of 1.1 MBq of [Lys40(Ahx-DTPA-111In)NH2]-exendin-4 with 100 mg/kg vatalanib had the same effect on a neuroendocrine tumor as the injection of 28 MBq of the radiopeptide alone but without any apparent side effects, such as radiation damage of the kidneys.
Resumo:
Alterations in pathways mediated by retinoblastoma susceptibility gene (RB) product are among the most common in human cancer. Mice with a single copy of the Rb gene are shown to develop a syndrome of multiple neuroendocrine neoplasia. The earliest Rb-deficient atypical cells were identified in the intermediate and anterior lobes of the pituitary, the thyroid and parathyroid glands, and the adrenal medulla within the first 3 months of postnatal development. These cells form gross tumors with various degrees of malignancy by postnatal day 350. By age of 380 days, 84% of Rb+/− mice exhibited lung metastases from C-cell thyroid carcinomas. Expression of a human RB transgene in the Rb+/− mice suppressed carcinogenesis in all tissues studied. Of particular clinical relevance, the frequency of lung metastases also was reduced to 12% in Rb+/− mice by repeated i.v. administration of lipid-entrapped, polycation-condensed RB complementary DNA. Thus, in spite of long latency periods during which secondary alterations can accumulate, the initial loss of Rb function remains essential for tumor progression in multiple types of neuroendocrine cells. Restoration of RB function in humans may prove an effective general approach to the treatment of RB-deficient disseminated tumors.