937 resultados para Neurodegenerative


Relevância:

20.00% 20.00%

Publicador:

Resumo:

According to clinical and pre-clinical studies, oxidative stress and its consequences may be the cause or, at least, a contributing factor, to a large number of neurodegenerative diseases. These diseases include common and debilitating disorders, characterized by progressive and irreversible loss of neurons in specific regions of the brain. The most common neurodegenerative diseases are Parkinson's disease, Huntington's disease, Alzheimer's disease and amyotrophic lateral sclerosis. Coenzyme Q(10) (CoQ(10)) has been extensively studied since its discovery in 1957. It is a component of the electron transportation chain and participates in aerobic cellular respiration, generating energy in the form of adenosine triphosphate (ATP). The property of CoQ(10) to act as an antioxidant or a pro-oxidant, suggests that it also plays an important role in the modulation of redox cellular status under physiological and pathological conditions, also performing a role in the ageing process. In several animal models of neurodegenerative diseases, CoQ(10) has shown beneficial effects in reducing disease progression. However, further studies are needed to assess the outcome and effectiveness of CoQ(10) before exposing patients to unnecessary health risks at significant costs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Hyperechogenicity of the substantia nigra is a frequent observation on transcranial sonography in Parkinson's disease and Machado-Joseph disease patients. Additionally, restless legs syndrome is a sleep disorder that is also frequently found in both diseases. Autopsy studies have demonstrated increased SN iron content in hyperechogenic substantia nigra. Iron storage is also known to be involved in restless legs syndrome. We formally compared echogenicity of the substantia nigra with restless legs syndrome in Parkinson's disease and Machado-Joseph disease patients. Methods: Transcranial brain sonography was performed in a sample of Parkinson's disease and Machado-Joseph disease patients, and findings then correlated with the presence and severity of restless legs syndrome. Results: There was a continuum of substantia nigra echogenicity among groups (Parkinson's disease versus Machado-Joseph disease versus controls) and sub-groups (Parkinson's disease with and without restless legs syndrome versus Machado-Joseph disease with and without restless legs syndrome) as well as a statistically significant negative correlation between restless legs syndrome severity and substantia nigra echogenicity (p<0.001). Conclusions: These preliminary observations demonstrate that the severity of RLS may be influenced by nigral iron load reflected by substantia nigra echogenicity in different neurodegenerative movement disorders. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rationale Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies. Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases. Objectives We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats. Methods Rats received vehicle or iron at postnatal days 12-14. At the age of 2 months, they received an acute intraperitoneal injection of vehicle or cannabidiol (5.0 or 10.0 mg/kg) immediately after the training session of the novel object recognition task. In order to investigate the effects of chronic cannabidiol, iron-treated rats received daily intraperitoneal injections of cannabidiol for 14 days. Twenty-four hours after the last injection, they were submitted to object recognition training. Retention tests were performed 24 h after training. Results A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats. Conclusions The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders. Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increasing number of genes required for mitochondrial biogenesis, dynamics, or function have been found to be mutated in metabolic disorders and neurological diseases such as Leigh Syndrome. In a forward genetic screen to identify genes required for neuronal function and survival in Drosophila photoreceptor neurons, we have identified mutations in the mitochondrial methionyl-tRNA synthetase, Aats-met, the homologue of human MARS2. The fly mutants exhibit age-dependent degeneration of photoreceptors, shortened lifespan, and reduced cell proliferation in epithelial tissues. We further observed that these mutants display defects in oxidative phosphorylation, increased Reactive Oxygen Species (ROS), and an upregulated mitochondrial Unfolded Protein Response. With the aid of this knowledge, we identified MARS2 to be mutated in Autosomal Recessive Spastic Ataxia with Leukoencephalopathy (ARSAL) patients. We uncovered complex rearrangements in the MARS2 gene in all ARSAL patients. Analysis of patient cells revealed decreased levels of MARS2 protein and a reduced rate of mitochondrial protein synthesis. Patient cells also exhibited reduced Complex I activity, increased ROS, and a slower cell proliferation rate, similar to Drosophila Aats-met mutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathophysiology of neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD) has not yet been completely elucidated. However, in the past few years, there have been great knowledge advances about intra-and extracellular proteins that may display impaired function or expression in AD, PD and other ND, such as amyloid beta (AB), alpha-synuclein, tau protein and neuroinfiammatory markers. Recent developments in the imaging techniques of positron emission tomography (PET) and single photon emission computed tomography (SPECT) now allow the non-invasive tracking of such molecular targets of known relevance to ND in vivo. This article summarizes recent findings of PET and SPECT studies using these novel methods, and discusses their potential role in the field of drug development for ND as well as future clinical applications in regard to differential diagnosis of ND and monitoring of disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With life expectancies increasing around the world, populations are getting age and neurodegenerative diseases have become a global issue. For this reason we have focused our attention on the two most important neurodegenerative diseases: Parkinson’s and Alzheimer’s. Parkinson’s disease is a chronic progressive neurodegenerative movement disorder of multi-factorial origin. Environmental toxins as well as agricultural chemicals have been associated with PD. Has been observed that N/OFQ contributes to both neurotoxicity and symptoms associated with PD and that pronociceptin gene expression is up-regulated in rat SN of 6-OHDA and MPP induced experimental parkinsonism. First, we investigated the role of N/OFQ-NOP system in the pathogenesis of PD in an animal model developed using PQ and/or MB. Then we studied Alzheimer's disease. This disorder is defined as a progressive neurologic disease of the brain leading to the irreversible loss of neurons and the loss of intellectual abilities, including memory and reasoning, which become severe enough to impede social or occupational functioning. Effective biomarker tests could prevent such devastating damage occurring. We utilized the peripheral blood cells of AD discordant monozygotic twin in the search of peripheral markers which could reflect the pathology within the brain, and also support the hypothesis that PBMC might be a useful model of epigenetic gene regulation in the brain. We investigated the mRNA levels in several genes involve in AD pathogenesis, as well DNA methylation by MSP Real-Time PCR. Finally by Western Blotting we assess the immunoreactivity levels for histone modifications. Our results support the idea that epigenetic changes assessed in PBMCs can also be useful in neurodegenerative disorders, like AD and PD, enabling identification of new biomarkers in order to develop early diagnostic programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein aggregation and formation of insoluble aggregates in central nervous system is the main cause of neurodegenerative disease. Parkinson’s disease is associated with the appearance of spherical masses of aggregated proteins inside nerve cells called Lewy bodies. α-Synuclein is the main component of Lewy bodies. In addition to α-synuclein, there are more than a hundred of other proteins co-localized in Lewy bodies: 14-3-3η protein is one of them. In order to increase our understanding on the aggregation mechanism of α-synuclein and to study the effect of 14-3-3η on it, I addressed the following questions. (i) How α-synuclein monomers pack each other during aggregation? (ii) Which is the role of 14-3-3η on α-synuclein packing during its aggregation? (iii) Which is the role of 14-3-3η on an aggregation of α-synuclein “seeded” by fragments of its fibrils? In order to answer these questions, I used different biophysical techniques (e.g., Atomic force microscope (AFM), Nuclear magnetic resonance (NMR), Surface plasmon resonance (SPR) and Fluorescence spectroscopy (FS)).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is thought to contribute to the pathogenesis of neurodegenerative diseases. Among the resident population of cells in the brain, astroglia have been suggested to actively participate in the induction and regulation of neuroinflammation by controlling the secretion of local mediators. However, the initial cellular mechanisms by which astrocytes react to pro-inflammatory molecules are still unclear. Our study identified mitochondria as highly sensitive organelles that rapidly respond to inflammatory stimuli. Time-lapse video microscopy revealed that mitochondrial morphology, dynamics and motility are drastically altered upon inflammation, resulting in perinuclear clustering of mitochondria. These mitochondrial rearrangements are accompanied by an increased formation of reactive oxygen species and a recruitment of autophagic vacuoles. 24 to 48 hours after the acute inflammatory stimulus, however, the mitochondrial network is re-established. Strikingly, the recovery of a tubular mitochondrial network is abolished in astrocytes with a defective autophagic response, indicating that activation of autophagy is required to restore mitochondrial dynamics. By employing co-cultivation assays we observed that primary cortical neurons undergo degeneration in the presence of inflamed astrocytes. However, this effect was not observed when the primary neurons were grown in conditioned medium derived from inflamed astrocytes, suggesting that a direct contact between astrocytes and neurons mediates neuronal dysfunction upon inflammation. Our results suggest that astrocytes react to inflammatory stimuli by transiently rearranging their mitochondria, a process that involves the autophagic machinery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term neurodegeneration defines numerous conditions that modify neuron’s normal functions in the human brain where is possible to observe a progressive and consistent neuronal loss. The mechanisms involved in neurodegenerative chronic and acute diseases evolution are not completely understood yet, however they share common characteristics such as misfolded proteins, oxidative stress, inflammation, excitotoxicity, and neuronal loss. Many studies have shown the frequency to develop neurodegenerative chronic diseases several years after an acute brain injury. In addition, many patients show, after a traumatic brain injury, motor and cognitive manifestations that are close to which are observed in neurodegenerative chronic patients. For this reason it is evident how is fundamental the concept of neuroprotection as a way to modulate the neurodegenerative processes evolution. Neuroinflammation, oxidative stress and the apoptotic process may be functional targets where operate to this end. Taking into account these considerations, the aim of the present study is to identify potential common pathogenetic pathways in neurodegenerative diseases using an integrated approach of preclinical studies. The goal is to delineate therapeutic strategies for the prevention of neuroinflammation, neurodegeneration and dysfunctions associated to Parkinson’s disease (PD) and cerebral ischemia. In the present study we used a murine model of PD treated with an isothiocyanate, 6-MSITC, able to quench ROS formation, restore the antioxidant GSH system, slow down the apoptotic neuronal death and counteract motor dysfunction induced by 6-OHDA. In the second study we utilized a transgenic mouse model knockout for CD36 receptor to investigate the inflammation involvement in a long term study of MCAo, which shows a better outcome after the damage induced. In conclusion, results in this study allow underlying the connection among these pathologies, and the importance of a neuroprotective strategy able to restore neurons activity where current drugs therapies have shown palliative but not healing abilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) separate the brain and the spinal cord from the circulating blood and are important for the maintenance of the CNS homeostasis. They build a physical barrier thereby protecting the CNS from pathogens and toxic agents, and their disruption plays a crucial role in the pathogenesis of several CNS disorders. In this thesis, the blood-CNS-barriers were studied via in vitro models in two case studies for neurodegenerative disorders, in particular Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). The first model evaluates treatment possibilities of AD using nanotechnology-based strategies. Since the toxic amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of AD, reduced generation or enhanced clearance of Aβ42 peptides are expected to modify the disease course in AD. Therefore, several Aβ42-lowering drugs like flurbiprofen had been tested in clinical trials, but most of them failed due to their low brain penetration. Here, flurbiprofen was embedded in polylactide (PLA) nanoparticles and its transport was examined in an in vitro BBB model. The embedding of flurbiprofen into the nanoparticles disguised its cytotoxic potential and enabled the administration of higher drug concentrations which resulted in a sufficient transport of the drug across an endothelial cell monolayer. These results demonstrate that non-permeable drugs can be transported efficiently via nanoparticles and that these nanotechnology-based strategies are a promising tool to generate novel therapeutic options for AD and other CNS diseases. rnThe focus of the second project was to investigate the impaired integrity of the BSCB in a mouse model for ALS. About 20% of all familial ALS cases are associated with missense mutations or small deletions in the gene that encodes Cu/Zn-superoxide dismutase 1 (SOD1). To date, the molecular mechanisms resulting in ALS are still unknown, but there is evidence that the disruption of the BSCB is one of the primary pathological events. In both familial and sporadic ALS patients, loss of endothelial integrity and endothelial cell damage was observed, and studies with SOD1 transgenic mice demonstrated that the BSCB disruption was found prior to motor neuron degeneration and neurovascular inflammation. Thus, an in vitro model for ALS endothelial cells was generated which exhibited comparable integrity characteristics and tight junction (TJ) protein expression profiles as isolated primary endothelial cells of the BSCB of SOD1 transgenic mice. In this, an alteration of the βcat/AKT/FoxO1 pathway, which regulates the expression of the TJ protein claudin-5, could be observed. These data furthermore indicate that ALS is a neurovascular disease, and understanding of the primary events in ALS pathogenesis will hopefully provide ideas for the development of new therapeutic strategies. rn

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative diseases are characterised by selective damage to specific neurons in the nervous system. Interest in such diseases in humans has resulted in considerable progress in the molecular understanding of these disorders in recent decades. Numerous neurodegenerative diseases have also been described in domestic animals but relatively little molecular work has been reported. In the present review, we have classified neurodegenerative disease according to neuroanatomical criteria. We have established two large groups, based on whether the neuronal cell body or its axon was primarily affected. Conditions such as motor neuron diseases, cerebellar degenerations and neuroaxonal dystrophies are discussed in terms of their clinical and neuropathological features. In the most studied disorders, we also present what is known about underlying pathomechanisms, and compare them with their human counterparts. The purpose of this review is to re-kindle interest in this group of diseases and to encourage veterinary researchers to investigate molecular mechanisms by taking advantage of current diagnostic tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To analyse the results of recent studies not yet included in a 2003 report of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) on occupational exposure to low-frequency electromagnetic fields as potential risk factor for neurodegenerative diseases. METHODS: A literature search was conducted in the online databases of PubMed, ISI Web of Knowledge, DIMDI and COCHRANE, as well as in specialised databases and journals. Eight studies published between January 2000 and July 2005 were included in the review. RESULTS: The findings of these studies contribute to the evidence of an association between occupational magnetic field exposure and the risk of dementia. Regarding amyotrophic lateral sclerosis, the recent results confirm earlier observations of an association with electric and electronic work and welding. Its relationship with magnetic field exposure remains unsolved. There are only few findings pointing towards an association between magnetic field exposure and Parkinson's disease. CONCLUSIONS: The epidemiological evidence for an association between occupational exposure to low-frequency electromagnetic fields and the risk of dementia has increased during the last five years. The impact of potential confounders should be evaluated in further studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: The objective of the present study was to investigate the relationship between extremely low-frequency magnetic field (ELF-MF) exposure and mortality from several neurodegenerative conditions in Swiss railway employees. METHODS: We studied a cohort of 20,141 Swiss railway employees with 464,129 person-years of follow-up between 1972 and 2002. For each individual, cumulative exposure was calculated from on-site measurements and modelling of past exposure. We compared cause-specific mortality in highly exposed train drivers (mean exposure: 21 microT) with less exposed occupational groups (for example station masters: 1 microT). RESULTS: The hazard ratio for train drivers compared to station masters was 1.96 [95% confidence interval (CI) = 0.98-3.92] for senile dementia and 3.15 (95% CI = 0.90-11.04) for Alzheimer's disease. For every 10 microT years of cumulative exposure senile dementia mortality increased by 5.7% (95% CI = 1.3-10.4), Alzheimer's disease by 9.4% (95% CI = 2.7-16.4) and amyotrophic lateral sclerosis by 2.1% (95% CI = -6.8 to 11.7). There was no evidence for an increase in mortality from Parkinson's disease and multiple sclerosis. CONCLUSIONS: This study suggests a link between exposure to ELF-MF and Alzheimer's disease and indicates that ELF-MF might act in later stages of the disease process.