993 resultados para Network sampling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Having reliable wireless communication in a network of mobile robots is an ongoing challenge, especially when the mobile robots are given tasks in hostile or harmful environments such as radiation environments in scientific facilities, tunnels with large metallic components and complicated geometries as found at CERN. In this paper, we propose a decentralised method for improving the wireless network throughput by optimizing the wireless relay robot position to receive the best wireless signal strength using implicit spatial diversity concepts and gradient-search algorithms. We experimentally demonstrate the effectiveness of the proposed solutions with a KUKA Youbot omni-directional mobile robot. The performance of the algorithms is compared under various scenarios in an underground scientific facility at CERN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Consider a network of unreliable links, modelling for example a communication network. Estimating the reliability of the network-expressed as the probability that certain nodes in the network are connected-is a computationally difficult task. In this paper we study how the Cross-Entropy method can be used to obtain more efficient network reliability estimation procedures. Three techniques of estimation are considered: Crude Monte Carlo and the more sophisticated Permutation Monte Carlo and Merge Process. We show that the Cross-Entropy method yields a speed-up over all three techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have proposed a novel robust inversion-based neurocontroller that searches for the optimal control law by sampling from the estimated Gaussian distribution of the inverse plant model. However, for problems involving the prediction of continuous variables, a Gaussian model approximation provides only a very limited description of the properties of the inverse model. This is usually the case for problems in which the mapping to be learned is multi-valued or involves hysteritic transfer characteristics. This often arises in the solution of inverse plant models. In order to obtain a complete description of the inverse model, a more general multicomponent distributions must be modeled. In this paper we test whether our proposed sampling approach can be used when considering an arbitrary conditional probability distributions. These arbitrary distributions will be modeled by a mixture density network. Importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The effectiveness of the importance sampling from an arbitrary conditional probability distribution will be demonstrated using a simple single input single output static nonlinear system with hysteretic characteristics in the inverse plant model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ERS-1 satellite carries a scatterometer which measures the amount of radiation scattered back toward the satellite by the ocean's surface. These measurements can be used to infer wind vectors. The implementation of a neural network based forward model which maps wind vectors to radar backscatter is addressed. Input noise cannot be neglected. To account for this noise, a Bayesian framework is adopted. However, Markov Chain Monte Carlo sampling is too computationally expensive. Instead, gradient information is used with a non-linear optimisation algorithm to find the maximum em a posteriori probability values of the unknown variables. The resulting models are shown to compare well with the current operational model when visualised in the target space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which accounts for input noise provided that a model of the noise process exists. In the limit where the noise process is small and symmetric it is shown, using the Laplace approximation, that this method adds an extra term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable, and sampling this jointly with the network’s weights, using a Markov chain Monte Carlo method, it is demonstrated that it is possible to infer the regression over the noiseless input. This leads to the possibility of training an accurate model of a system using less accurate, or more uncertain, data. This is demonstrated on both the, synthetic, noisy sine wave problem and a real problem of inferring the forward model for a satellite radar backscatter system used to predict sea surface wind vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation is carried out into the design of a small local computer network for eventual implementation on the University of Aston campus. Microprocessors are investigated as a possible choice for use as a node controller for reasons of cost and reliability. Since the network will be local, high speed lines of megabit order are proposed. After an introduction to several well known networks, various aspects of networks are discussed including packet switching, functions of a node and host-node protocol. Chapter three develops the network philosophy with an introduction to microprocessors. Various organisations of microprocessors into multicomputer and multiprocessor systems are discussed, together with methods of achieving reliabls computing. Chapter four presents the simulation model and its implentation as a computer program. The major modelling effort is to study the behaviour of messages queueing for access to the network and the message delay experienced on the network. Use is made of spectral analysis to determine the sampling frequency while Sxponentially Weighted Noving Averages are used for data smoothing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nonlinear and stochastic control problems, learning an efficient feed-forward controller is not amenable to conventional neurocontrol methods. For these approaches, estimating and then incorporating uncertainty in the controller and feed-forward models can produce more robust control results. Here, we introduce a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. A nonlinear multi-variable system with different delays between the input-output pairs is used to demonstrate the successful application of the developed control algorithm. The proposed method is suitable for redundant control systems and allows us to model strongly non-Gaussian distributions of control signal as well as processes with hysteresis. © 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This ex post facto study (N = 209) examined the relationships between employer job strategies and job retention among organizations participating in Florida welfare-to-work network programs and associated the strategies with job retention data to determine best practices. ^ An internet-based self-report survey battery was administered to a heterogeneous sampling of organizations participating in the Florida welfare-to-work network program. Hypotheses were tested through correlational and hierarchical regression analytic procedures. The partial correlation results linked each of the job retention strategies to job retention. Wages, benefits, training and supervision, communication, job growth, work/life balance, fairness and respect were all significantly related to job retention. Hierarchical regression results indicated that the training and supervision variable was the best predictor of job retention in the regression equation. ^ The size of the organization was also a significant predictor of job retention. Large organizations reported higher job retention rates than small organizations. There was no statistical difference between the types of organizations (profit-making and non-profit) and job retention. The standardized betas ranged from to .26 to .41 in the regression equation. Twenty percent of the variance in job retention was explained by the combination of demographic and job retention strategy predictors, supporting the theoretical, empirical, and practical relevance of understanding the association between employer job strategies and job retention outcomes. Implications for adult education and human resource development theory, research, and practice are highlighted as possible strategic leverage points for creating conditions that facilitate the development of job strategies as a means for improving former welfare workers’ job retention.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This report summarizes the existing data from the FIU Coastal Water Quality Monitoring Network for calendar year January 1 – December 31, 2007. This includes water quality data collected from 28 stations in Florida Bay, 22 stations in Whitewater Bay, 25 stations in Ten Thousand Islands, 25 stations in Biscayne Bay, 49 stations on the Southwest Florida Shelf (Shelf), and 28 stations in the Cape Romano-Pine Island Sound area. Each of the stations in Florida Bay were monitored on a monthly basis with monitoring beginning in March 1991; Whitewater Bay monitoring began in September 1992; Biscayne Bay monthly monitoring began September 1993; the SW Florida Shelf was sampled quarterly beginning in spring 1995; and monthly sampling in the Cape Romano-Pine Island Sound area started January 1999.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the interactions among the various phases of network research design in the context of our current work using Mixed Methods and SNA on networks and rural economic development. We claim that there are very intricate inter-dependencies among the various phases of network research design - from theory and formulation of research questions right through to modes of analysis and interpretation. Through examples drawn from our work we illustrate how choices about methods for Sampling and Data Collection are influenced by these interdependencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive investigation has been conducted on network data, especially weighted network in the form of symmetric matrices with discrete count entries. Motivated by statistical inference on multi-view weighted network structure, this paper proposes a Poisson-Gamma latent factor model, not only separating view-shared and view-specific spaces but also achieving reduced dimensionality. A multiplicative gamma process shrinkage prior is implemented to avoid over parameterization and efficient full conditional conjugate posterior for Gibbs sampling is accomplished. By the accommodating of view-shared and view-specific parameters, flexible adaptability is provided according to the extents of similarity across view-specific space. Accuracy and efficiency are tested by simulated experiment. An application on real soccer network data is also proposed to illustrate the model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24 %, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level. Molecular clock application revealed that the evolutionary history of O. similis s.l. is possibly closely associated with the reorganization of the ocean circulation in the mid Miocene and may be an example of allopatric speciation in the pelagic zone.