990 resultados para Network robustness
Resumo:
The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed model is constrained by three different kinds of flow conditions. These constraints will yield a network that provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The paper includes computational experiments which show how the introduction of robustness influences network design
Resumo:
Content protection is a key component for the success of a multimedia services platform, as proven by the plethora of solutions currently on the market. In this paper we analyze a new network scenario where permanent bidirectional connectivity and video-aware encryption technologies allow a trustful operation of ubiquitous end devices. We propose new scalable models for a content protection architecture that may achieve dramatic improvement in robustness, reliability, and scalability. Selective ciphering and countermeasures are included in those models, together with several examples of their application.
Resumo:
Bistability and switching are two important aspects of the genetic regulatory network of phage. Positive and negative feedbacks are key regulatory mechanisms in this network. By the introduction of threshold values, the developmental pathway of A phage is divided into different stages. If the protein level reaches a threshold value, positive or negative feedback will be effective and regulate the process of development. Using this regulatory mechanism, we present a quantitative model to realize bistability and switching of phage based on experimental data. This model gives descriptions of decisive mechanisms for different pathways in induction. A stochastic model is also introduced for describing statistical properties of switching in induction. A stochastic degradation rate is used to represent intrinsic noise in induction for switching the system from the lysogenic pathway to the lysis pathway. The approach in this paper represents an attempt to describe the regulatory mechanism in genetic regulatory network under the influence of intrinsic noise in the framework of continuous models. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulations are used for investigating the impact of external noise. Results of sensitivity analysis are consistent with those obtained by stochastic simulations. Stochastic models with external noise can be used for studying the robustness not only to external noise but also to parameter variations. For external noise we also use stochastic models to study the robustness of the function of each gene and that of the system.
Resumo:
This paper introduces a joint load balancing and hotspot mitigation protocol for mobile ad-hoc network (MANET) termed by us as 'load_energy balance + hotspot mitigation protocol (LEB+HM)'. We argue that although ad-hoc wireless networks have limited network resources - bandwidth and power, prone to frequent link/node failures and have high security risk; existing ad hoc routing protocols do not put emphasis on maintaining robust link/node, efficient use of network resources and on maintaining the security of the network. Typical route selection metrics used by existing ad hoc routing protocols are shortest hop, shortest delay, and loop avoidance. These routing philosophy have the tendency to cause traffic concentration on certain regions or nodes, leading to heavy contention, congestion and resource exhaustion which in turn may result in increased end-to-end delay, packet loss and faster battery power depletion, degrading the overall performance of the network. Also in most existing on-demand ad hoc routing protocols intermediate nodes are allowed to send route reply RREP to source in response to a route request RREQ. In such situation a malicious node can send a false optimal route to the source so that data packets sent will be directed to or through it, and tamper with them as wish. It is therefore desirable to adopt routing schemes which can dynamically disperse traffic load, able to detect and remove any possible bottlenecks and provide some form of security to the network. In this paper we propose a combine adaptive load_energy balancing and hotspot mitigation scheme that aims at evenly distributing network traffic load and energy, mitigate against any possible occurrence of hotspot and provide some form of security to the network. This combine approach is expected to yield high reliability, availability and robustness, that best suits any dynamic and scalable ad hoc network environment. Dynamic source routing (DSR) was use as our underlying protocol for the implementation of our algorithm. Simulation comparison of our protocol to that of original DSR shows that our protocol has reduced node/link failure, even distribution of battery energy, and better network service efficiency.
Resumo:
In this paper we present increased adaptivity and robustness in distributed object tracking by multi-camera networks using a socio-economic mechanism for learning the vision graph. To build-up the vision graph autonomously within a distributed smart-camera network, we use an ant-colony inspired mechanism, which exchanges responsibility for tracking objects using Vickrey auctions. Employing the learnt vision graph allows the system to optimise its communication continuously. Since distributed smart camera networks are prone to uncertainties in individual cameras, such as failures or changes in extrinsic parameters, the vision graph should be sufficiently robust and adaptable during runtime to enable seamless tracking and optimised communication. To better reflect real smart-camera platforms and networks, we consider that communication and handover are not instantaneous, and that cameras may be added, removed or their properties changed during runtime. Using our dynamic socio-economic approach, the network is able to continue tracking objects well, despite all these uncertainties, and in some cases even with improved performance. This demonstrates the adaptivity and robustness of our approach.
Resumo:
Communication through relay channels in wireless sensor networks can create diversity and consequently improve the robustness of data transmission for ubiquitous computing and networking applications. In this paper, we investigate the performances of relay channels in terms of diversity gain and throughput via both experimental research and theoretical analysis. Two relaying algorithms, dynamic relaying and fixed relaying, are utilised and tested to find out what the relay channels can contribute to system performances. The tests are based on a wireless relay sensor network comprising a source node, a destination node and a couple of relay nodes, and carried out in an indoor environment with rare movement of objects nearby. The tests confirm, in line with the analytical results, that more relay nodes lead to higher diversity gain in the network. The test results also show that the data throughput between the source node and the destination node is enhanced by the presence of the relay nodes. Energy consumption in association with the relaying strategy is also analysed. Copyright © 2009 John Wiley & Sons, Ltd.
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.
Resumo:
In this thesis, the problem of controlling a quadrotor UAV is considered. It is done by presenting an original control system, designed as a combination of Neural Networks and Disturbance Observer, using a composite learning approach for a system of the second order, which is a novel methodology in literature. After a brief introduction about the quadrotors, the concepts needed to understand the controller are presented, such as the main notions of advanced control, the basic structure and design of a Neural Network, the modeling of a quadrotor and its dynamics. The full simulator, developed on the MATLAB Simulink environment, used throughout the whole thesis, is also shown. For the guidance and control purposes, a Sliding Mode Controller, used as a reference, it is firstly introduced, and its theory and implementation on the simulator are illustrated. Finally the original controller is introduced, through its novel formulation, and implementation on the model. The effectiveness and robustness of the two controllers are then proven by extensive simulations in all different conditions of external disturbance and faults.
Resumo:
Disconnectivity between the Default Mode Network (DMN) nodes can cause clinical symptoms and cognitive deficits in Alzheimer׳s disease (AD). We aimed to examine the structural connectivity between DMN nodes, to verify the extent in which white matter disconnection affects cognitive performance. MRI data of 76 subjects (25 mild AD, 21 amnestic Mild Cognitive Impairment subjects and 30 controls) were acquired on a 3.0T scanner. ExploreDTI software (fractional Anisotropy threshold=0.25 and the angular threshold=60°) calculated axial, radial, and mean diffusivities, fractional anisotropy and streamline count. AD patients showed lower fractional anisotropy (P=0.01) and streamline count (P=0.029), and higher radial diffusivity (P=0.014) than controls in the cingulum. After correction for white matter atrophy, only fractional anisotropy and radial diffusivity remained significantly lower in AD compared to controls (P=0.003 and P=0.05). In the parahippocampal bundle, AD patients had lower mean and radial diffusivities (P=0.048 and P=0.013) compared to controls, from which only radial diffusivity survived for white matter adjustment (P=0.05). Regression models revealed that cognitive performance is also accounted for by white matter microstructural values. Structural connectivity within the DMN is important to the execution of high-complexity tasks, probably due to its relevant role in the integration of the network.
Resumo:
32
Resumo:
The article seeks to investigate patterns of performance and relationships between grip strength, gait speed and self-rated health, and investigate the relationships between them, considering the variables of gender, age and family income. This was conducted in a probabilistic sample of community-dwelling elderly aged 65 and over, members of a population study on frailty. A total of 689 elderly people without cognitive deficit suggestive of dementia underwent tests of gait speed and grip strength. Comparisons between groups were based on low, medium and high speed and strength. Self-related health was assessed using a 5-point scale. The males and the younger elderly individuals scored significantly higher on grip strength and gait speed than the female and oldest did; the richest scored higher than the poorest on grip strength and gait speed; females and men aged over 80 had weaker grip strength and lower gait speed; slow gait speed and low income arose as risk factors for a worse health evaluation. Lower muscular strength affects the self-rated assessment of health because it results in a reduction in functional capacity, especially in the presence of poverty and a lack of compensatory factors.
Resumo:
Plackett-Burman experimental design was applied for the robustness assessment of GC×GC-qMS (Comprehensive Two-Dimensional Gas Chromatography with Fast Quadrupolar Mass Spectrometric Detection) in quantitative and qualitative analysis of volatiles compounds from chocolate samples isolated by headspace solid-phase microextraction (HS-SPME). The influence of small changes around the nominal level of six factors deemed as important on peak areas (carrier gas flow rate, modulation period, temperature of ionic source, MS photomultiplier power, injector temperature and interface temperature) and of four factors considered as potentially influential on spectral quality (minimum and maximum limits of the scanned mass ranges, ions source temperature and photomultiplier power). The analytes selected for the study were 2,3,5-trimethylpyrazine, 2-octanone, octanal, 2-pentyl-furan, 2,3,5,6-tetramethylpyrazine, and 2-nonanone e nonanal. The factors pointed out as important on the robustness of the system were photomultiplier power for quantitative analysis and lower limit of mass scanning range for qualitative analysis.
Resumo:
Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix.