924 resultados para Net rate of heat release
Resumo:
Central Governor Model (CGM) suggests that perturbations in the rate of heat storage (AS) are centrally integrated to regulate exercise intensity in a feed-forward fashion to prevent excessive thermal strain. We directly tested the CGM by manipulating ambient temperature (Tam) at 20-minute intervals from 20°C to 35°C, and returning to 20°C, while cycling at a set rate of perceived exertion (RPE). The synchronicity of power output (PO) with changes in HS and Tam were quantified using Auto-Regressive Integrated Moving Averages analysis. PO fluctuated irregularly but was not significantly correlated to changes in thermo physiological status. Repeated measures indicated no changes in lactate accumulation. In conclusion, real time dynamic sensation of Tam and integration of HS does not directly influence voluntary pacing strategies during sub-maximal cycling at a constant RPE while non-significant changes in blood lactate suggest an absence of peripheral fatigue.
Resumo:
In this study, the supercritical antisolvent with enhanced mass transfer method (SASEM) is used to fabricate micro and nanoparticles of biocompatible and biodegradable polymer PLGA (poly DL lactide co glycolic acid). This process may be extended to the encapsulation of drugs in these micro and nanoparticles for controlled release purposes. Conventional supercritical antisolvent (SAS) process involves spraying a solution (organic solvent + dissolved polymer) into supercritical fluid (CO[subscript 2]), which acts as an antisolvent. The high rate of mass transfer between organic solvent and supercritical CO[subscript 2] results in supersaturation of the polymer in the spray droplet and precipitation of the polymer as micro or nanoparticles occurs. In the SASEM method, ultrasonic vibration is used to atomize the solution entering the high pressure with supercritical CO[subscript 2]. At the same time, the ultrasonic vibration generated turbulence in the high pressure vessel, leading to better mass transfer between the organic solvent and the supercritical CO₂. In this study, two organic solvents, acetone and dichloromethane (DCM) were used in the SASEM process. Phase Doppler Particle Analyzer (PDPA) was used to study the ultrasonic atomization of liquid using the ultrasonic probe for the SASEM process. Scanning Electron Microscopy (SEM) was used to study the size and morphology of the polymer particles collected at the end of the process.
Resumo:
Depending on the composition, the mixture of surfactant, oil and water, may form supramolecular aggregates with different structures which can significantly influence the drug release. In this work several microemulsion (ME) systems containing soya phosphatidylcholine (SPC) and eumulgin HRE40 (TM) (EU) as surfactant, cholesterol (O) as oil phase, and ultra-pure water as an aqueous phase were studied. MEs with and without the antitumoral drug doxorubicin (DOX) were prepared. The microstructures of the systems were characterized by photon correlation spectroscopy, rheological behavior, polarized light microscopy, small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). The results reveal that the diameter of the oil droplets was dependent on the surfactant (S) amount added to formulations. The apparent viscosity was dependent on the O/S ratio. High O/S ratio leads to the crystallization of cholesterol polymorphs phases which restricts the mobility of the DOX molecules into the ME structure. Droplets with short-range spatial correlation were formed from the ME with the low O/S ratio. The increase of the cholesterol fraction in the O/S mixture leads to the formation of ordered structures with lamellar arrangements. These different structural organizations directly influenced the drug release profiles. The in vitro release assay showed that the increase of the O/S ratio in the formulations inhibited the constant rate of DOX release. Since the DOX release ratio was directly dependent on the ratio of O/S following an exponential decay profile, this feature can be used to control the DOX release from the ME formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper deals with the effects of hair coat characteristics on the sweating rate of Brazilian Braford cows and estimation of heritabilities and genetic correlations of these traits. Data (n=1607) on hair length, coat thickness, hair diameter, number of hairs per unit area, coat reflectance and sweating rate were recorded from heifers and cows of a commercial herd managed on range under extensive system. The data were analyzed considering the following effects on the model for hair coat traits: classes of sires and contemporary groups; linear effects of month and genotype; linear and quadratic effects of age. The effect of sire was important (P<0.05) for all hair coat traits, except for number of hairs; contemporary groups affected (P<0.05) all hair coat traits; the effect of sampling month was important (P<0.05) for hair length and reflectance; genotype affected (P<0.05) hair length, diameter and coat reflectance; the quadratic effect of age was important (P<0.05) only for coat reflectance. Two models were used to analyze the sweating rate. The first model considered the following fixed effects: classes of contemporary groups and sires; linear effect of genotype, coat thickness, hair length, hair diameter, number of hairs, coat reflectance; linear and quadratic effects of time of day, age, air temperature, partial vapour pressure and radiant heat load. The second model used for the sweating rate considered the same fixed effects for the first model, except that the hair coat characteristics were adjusted for important effects used in the models to analyze hair coat traits. All meteorological factors and contemporary groups were important (P<0.05) on variation of sweating rate in both models. The Restricted Maximum. Likelihood (REML) method was used to estimate variance and covariance components under the sire model. Results included heritability estimates in narrow (h(2)) and broad (H) sense for single-trait analyzes: hair thickness (h(2)=0.16; H-2=0.26); hair length (h(2)=0.18; H-2=0.39); number of hairs (h(2)=0.08 +/- 0.07; H-2=0.08 +/- 0.07); hair diameter (h(2)=0.12 +/- 0.07; H-2=0.12 +/- 0.07); coat reflectance (h(2)=0.30; H-2=0.42); and sweating rate (h(2)=0.10 +/- 0.07; H-2=0.10 +/- 0.07). In general, the genetic correlations between the adaptive traits were favorable as for the direction to select for adaptation in tropical environment; however, they presented high standard errors. The results of this study imply that hair coat characteristics and sweating ability are important for the adaptability to heat stress and they must be better studied and further considered for selection for genetic progress of adaptation in tropical environment. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
Heat-transfer studies were carried out in a packed bed of glass beads, cooled by the wall, through which air percolated. Tube-to-particle diameter ratios (D/dp) ranged from 1.8 to 55, while the air mass flux ranged from 0.204 to 2.422 kg/m2·s. The outlet bed temperature (TL) was measured by a brass ring-shaped sensor and by aligned thermocouples. The resulting radial temperature profiles differed statistically. Angular temperature fluctuations were observed through measurements made at 72 angular positions. These fluctuations do not follow a normal distribution around the mean for low ratios D/dp. The presence of a restraining screen, as well as the increasing distance between the temperature measuring device and the bed surface, distorts TL. The radial temperature profile at the bed entrance (T0) was measured by a ring-shaped sensor, and T 0 showed to be a function of the radial position, the particle diameter, and the fluid flow rate.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)