994 resultados para Negative Constant Curvature
Resumo:
The aim of this study was to investigate whether the maximal power output (Pmax) during an incremental test was dependent on the curvature constant (W') of the power-time relationship. Thirty healthy male subjects (maximal oxygen uptake = 3.58 ± 0.40 L·min(-1)) performed a ramp incremental cycling test to determine the maximal oxygen uptake and Pmax, and 4 constant work rate tests to exhaustion to estimate 2 parameters from the modeling of the power-time relationship (i.e., critical power (CP) and W'). Afterwards, the participants were ranked according to their magnitude of W'. The median third was excluded to form a high W' group (HIGH, n = 10), and a low W' group (LOW, n = 10). Maximal oxygen uptake (3.84 ± 0.50 vs. 3.49 ± 0.37 L·min(-1)) and CP (213 ± 22 vs. 200 ± 29 W) were not significantly different between HIGH and LOW, respectively. However, Pmax was significantly greater for the HIGH (337 ± 23 W) than for the LOW (299 ± 40 W). Thus, in physically active individuals with similar aerobic parameters, W' influences the Pmax during incremental testing.
Resumo:
Anaerobic efforts are commonly required through repeated sprint during efforts in many sports, making the anaerobic pathway a target of training. Nevertheless, to identify improvements on such energetic way it is necessary to assess anaerobic capacity or power, which is usually complex. For this purpose, authors have postulated the use of short running performances to anaerobic ability assessment. Thus, the aim of this study was to find a relationship between running performances on anaerobic power, anaerobic capacity or repeated sprint ability. Methods Thirteen military performed maximal running of 50 (P50), 100 (P100) and 300 (P300) m on track, beyond of running-based anaerobic sprint test (RAST; RSA and anaerobic power test), maximal anaerobic running test (MART; RSA and anaerobic capacity test) and the W′ from critical power model (anaerobic capacity test). Results By RAST variables, peak and average power (absolute and relative) and maximum velocity were significantly correlated with P50 (r = −0.68, p = 0.03 and −0.76, p = 0.01; −0.83, p < 0.01 and −0.83, p < 0.01; and −0.78, p < 0.01), respectively. The maximum intensity of MART was negatively and significantly correlated with P100 (r = −0.59) and W′ was not statistically correlated with any of the performances. Conclusion MART and W′ were not correlated with short running performances, having a weak performance predicting probably due to its longer duration in relation to assessed performances. Observing RAST outcomes, we postulated that such a protocol can be used during daily training as short running performance predictor.
Resumo:
Toroidal DNA condensates have received considerable attention for their possible relationship to the packaging of DNA in viruses and in general as a model of ordered DNA condensation. A spool-like model has primarily been supported for DNA organization within toroids. However, our observations suggest that the actual organization may be considerably different. We present an alternate model in which DNA for a given toroid is organized within a series of equally sized contiguous loops that precess about the toroid axis. A related model for the toroid formation process is also presented. This kinetic model predicts a distribution of toroid sizes for DNA condensed from solution that is in good agreement with experimental data.
Resumo:
A negative input-resistance compensator is designed to stabilize a power electronic brushless dc motor drive with constant power-load characteristics. The strategy is to feed a portion of the changes in the dc-link voltage into the current control loop to modify the system input impedance in the midfrequency range and thereby to damp the input filter. The design process of the compensator and the selection of parameters are described. The impact of the compensator is examined on the motor-controller performance, and finally, the effectiveness of the controller is verified by simulation and experimental testing.
Resumo:
Insect monitoring and sampling programmes are used in the stored grains industry for the detection and estimation of insect pests. At the low pest densities dictated by economic and commercial requirements, the accuracy of both detection and abundance estimates can be influenced by variations in the spatial structure of pest populations over short distances. Geostatistical analysis of Rhyzopertha dominica populations in 2 dimensions showed that, in both the horizontal and vertical directions and at all temperatures examined, insect numbers were positively correlated over short (0-5cm) distances, and negatively correlated over longer (≥10cm) distances. Analysis in 3 dimensions showed a similar pattern, with positive correlations over short distances and negative correlations at longer distances. At 35°C, insects were located significantly further from the grain surface than at 25 and 30°C. Dispersion metrics showed statistically significant aggregation in all cases. This is the first research using small sample units, high sampling intensities, and a range of temperatures, to show spatial structuring of R. dominica populations over short distances. This research will have significant implications for sampling in the stored grains industry.
Resumo:
Using a multiple plasma deposition-annealing (MDA) technique, we have fabricated an Au nanoisland-based thin film nanoresistor with a very low temperature coefficient of electrical resistivity in a cryogenic-to-room temperature range of 10 to 300 K. The nanoislanded gold film was deposited on a SiO2/Si wafer (500 nm SiO2 thickness) between two 300 nm thick Au electrodes which were separated by 100 m. A sophisticated selection of the thickness of the nanoislanded gold film, the annealing temperature, as well as the number of deposition/annealing cycles resulted in the fabrication of a nanoresistor with a temperature coefficient of electrical resistivity of 2.1 × 10-3 K-1 and the resistivity deviation not exceeding 2% in a cryogenic-to-room temperature range. We have found that the constant resistivity regime of the nanoisland-based thin film nanoresistor corresponds to a minimized nanoisland activation energy (approximately 0.3 meV). This energy can be minimized by reducing the nearest neighbor distance and increasing the size of the Au nanoislands in the optimized nanoresistor structure. It is shown that the constant resistivity nanoresistor operates in the regime where the thermally activated electron tunneling is compensated by the negative temperature dependence of the metallic-type conductivity of nanoislands. Our results are relevant to the development of commercially viable methods of nanoresistor production for various nanoelectronics-based devices. The proposed MDA technique also provides the opportunity to fabricate large arrays of metallic nanoparticles with controllable size, shapes and inter-nanoparticle gaps.
Resumo:
In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.
Resumo:
Pressure dependence of the 35Cl Nuclear Quadrupole Resonances (N.Q.R.) in 2,5-, 2,6- and 3,5-dichlorophenols (DCP) has been studied up to a pressure of about 6·5 kbar at room temperature. While the pressure dependence of the two resonance lines in 2,6-DCP is essentially similar, the lower frequency line in 2,5-DCP is almost pressure independent and the higher frequency line shows a linear variation with pressure upto about 3·5 kbar but shows a negative pressure coefficient beyond this pressure. The two lines in 3,5-DCP have a non-linear pressure dependence with the curvature changing smoothly with pressure. The pressure coefficient for both lines becomes negative beyond a pressure of 5 kbar. The pressure dependence of the N.Q.R. frequencies is discussed in relation to intra- and inter-molecular contacts. Also, a thermodynamic analysis of the data is carried out to determine the constant volume temperature derivative of the N.Q.R. frequency.
Resumo:
An isolated wind power generation scheme using slip ring induction machine (SRIM) is proposed. The proposed scheme maintains constant load voltage and frequency irrespective of the wind speed or load variation. The power circuit consists of two back-to-back connected inverters with a common dc link, where one inverter is directly connected to the rotor side of SRIM and the other inverter is connected to the stator side of the SRIM through LC filter. Developing a negative sequence compensation method to ensure that, even under the presence of unbalanced load, the generator experiences almost balanced three-phase current and most of the unbalanced current is directed through the stator side converter is the focus here. The SRIM controller varies the speed of the generator with variation in the wind speed to extract maximum power. The difference of the generated power and the load power is either stored in or extracted from a battery bank, which is interfaced to the common dc link through a multiphase bidirectional fly-back dc-dc converter. The SRIM control scheme, maximum power point extraction algorithm and the fly-back converter topology are incorporated from available literature. The proposed scheme is both simulated and experimentally verified.
Resumo:
We show that a large class of Cantor-like sets of R-d, d >= 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d >= 2. An analogous result is also proved for subsets of R-d arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable numbers in R. Furthermore, we describe a condition on sets, which is fulfilled by a large class, ensuring a large intersection with these Cantor-like sets.
Resumo:
The curvature (T)(w) of a contraction T in the Cowen-Douglas class B-1() is bounded above by the curvature (S*)(w) of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this paper, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle E-T corresponding to the operator T in the Cowen-Douglas class B-1() which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the class B-1() for a bounded domain in C-m.
Resumo:
We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M where R(g) and dv (g) denote the corresponding Riemannian curvature tensor and volume form and p a (0, a). First we prove that the Riemannian metrics with non-zero constant sectional curvature are strictly stable for for certain values of p. Then we conclude that they are strict local minimizers for for those values of p. Finally generalizing this result we prove that product of space forms of same type and dimension are strict local minimizer for for certain values of p.
Resumo:
In this paper we present one of the first high-speed particle image velocimetry measurements to quantify flame-turbulence interaction in centrally-ignited constant-pressure premixed flames expanding in nearisotropic turbulence. Measurements of mean flow velocity and rms of fluctuating flow velocity are provided over a range of conditions both in the presence and absence of the flame. The distributions of stretch rate contributions from different terms such as tangential straining, normal straining and curvature are also provided. It is found that the normal straining displays non-Gaussian pdf tails whereas the tangential straining shows near Gaussian behavior. We have further tracked the motion of the edge points that reside and co-move with the edge of the flame kernel during its evolution in time, and found that within the measurement conditions, on average the persistence time scales of stretch due to pure curvature exceed that due to tangential straining by at least a factor of two. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
The leaf surface usually stays flat, maintained by coordinated growth. Growth perturbation can introduce overall surface curvature, which can be negative, giving a saddle-shaped leaf, or positive, giving a cup-like leaf. Little is known about the molecular mechanisms that underlie leaf flatness, primarily because only a few mutants with altered surface curvature have been isolated and studied. Characterization of mutants of the CINCINNATA-like TCP genes in Antirrhinum and Arabidopsis have revealed that their products help maintain flatness by balancing the pattern of cell proliferation and surface expansion between the margin and the central zone during leaf morphogenesis. On the other hand, deletion of two homologous PEAPOD genes causes cup-shaped leaves in Arabidopsis due to excess division of dispersed meristemoid cells. Here, we report the isolation and characterization of an Arabidopsis mutant, tarani (tni), with enlarged, cup-shaped leaves. Morphometric analyses showed that the positive curvature of the tni leaf is linked to excess growth at the centre compared to the margin. By monitoring the dynamic pattern of CYCLIN D3;2 expression, we show that the shape of the primary arrest front is strongly convex in growing tni leaves, leading to excess mitotic expansion synchronized with excess cell proliferation at the centre. Reduction of cell proliferation and of endogenous gibberellic acid levels rescued the tni phenotype. Genetic interactions demonstrated that TNI maintains leaf flatness independent of TCPs and PEAPODs.