999 resultados para Navigation Graph
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
This project proposes an approach for supporting Indoor Navigation Systems using Pedestrian Dead Reckoning-based methods and by analyzing motion sensor data available in most modern smartphones. Processes suggested in this investigation are able to calculate the distance traveled by a user while he or she is walking. WLAN fingerprint- based navigation systems benefit from the processes followed in this research and results achieved to reduce its workload and improve its positioning estimations.
Resumo:
When assessing investment options, investors focus on the graphs of annual reports, despite lack of auditing. If poorly constructed, graphs distort perceptions and lead to inaccurate decisions. This study examines graph usage in all the companies listed on Euronext Lisbon in 2013. The findings suggest that graphs are common in the annual reports of Portuguese companies and that, while there is no evidence of Selectivity Distortion, both Measurement and Orientation Distortions are pervasive. The study recommends the auditing of financial graphs, and urges preparers and users of annual reports to be wary of the possibility of graph distortion.
Resumo:
As investors and other users of annual reports often focus their attention on graphs, it is important that they portray accurate and reliable information. However, previous studies show that graphs often distort information and mislead users. This study analyses graph usage in annual reports from the 52 most traded Norwegian companies. The findings suggest that Norwegian companies commonly use graphs, and that the graph distortions, presentational enhancement and measurement distortion, are present. No evidence of selectivity was found. This study recommends development of guidelines for graphical disclosure, and advises preparers and users of annual reports to be aware of misleading graphs.
Resumo:
We present a computer-assisted analysis of combinatorial properties of the Cayley graphs of certain finitely generated groups: Given a group with a finite set of generators, we study the density of the corresponding Cayley graph, that is, the least upper bound for the average vertex degree (= number of adjacent edges) of any finite subgraph. It is known that an m-generated group is amenable if and only if the density of the corresponding Cayley graph equals to 2m. We test amenable and non-amenable groups, and also groups for which amenability is unknown. In the latter class we focus on Richard Thompson’s group F.
Resumo:
The aim of this retrospective study was to compare the clinical and radiographic results after TKA (PFC, DePuy), performed either by computer assisted navigation (CAS, Brainlab, Johnson&Johnson) or by conventional means. Material and methods: Between May and December 2006 we reviewed 36 conventional TKA performed between 2002 and 2003 (group A) and 37 navigated TKA performed between 2005 and 2006 (group B) by the same experienced surgeon. The mean age in group A was 74 years (range 62-90) and 73 (range 58-85) in group B with a similar age distribution. The preoperative mechanical axes in group A ranged from -13° varus to +13° valgus (mean absolute deviation 6.83°, SD 3.86), in group B from -13° to +16° (mean absolute deviation 5.35, SD 4.29). Patients with a previous tibial osteotomy or revision arthroplasty were excluded from the study. Examination was done by an experienced orthopedic resident independent of the surgeon. All patients had pre- and postoperative long standing radiographs. The IKSS and the WOMAC were utilized to determine the clinical outcome. Patient's degree of satisfaction was assessed on a visual analogous scale (VAS). Results: 32 of the 37 navigated TKAs (86,5%) showed a postoperative mechanical axis within the limits of 3 degrees of valgus or varus deviation compared to only 24 (66%) of the 36 standard TKAs. This difference was significant (p = 0.045). The mean absolute deviation from neutral axis was 3.00° (range -5° to +9°, SD: 1.75) in group A in comparison to 1.54° (range -5° to +4°, SD: 1.41) in group B with a highly significant difference (p = 0.000). Furthermore, both groups showed a significant postoperative improvement of their mean IKSS-values (group A: 89 preoperative to 169 postoperative, group B 88 to 176) without a significant difference between the two groups. Neither the WOMAC nor the patient's degree of satisfaction - as assessed by VAS - showed significant differences. Operation time was significantly higher in group B (mean 119.9 min.) than in group A (mean 99.6 min., p <0.000). Conclusion: Our study showed consistent significant improvement of postoperative frontal alignment in TKA by computer assisted navigation (CAS) compared to standard methods, even in the hands of a surgeon well experienced in standard TKA implantation. However, the follow-up time of this study was not long enough to judge differences in clinical outcome. Thus, the relevance of computer navigation for clinical outcome and survival of TKA remains to be proved in long term studies to justify the longer operation time. References 1 Stulberg SD. Clin Orth Rel Res. 2003;(416):177-84. 2 Chauhan SK. JBJS Br. 2004;86(3):372-7. 3 Bäthis H, et al. Orthopäde. 2006;35(10):1056-65.
Resumo:
Entretien conduit par Bernard Garnger avec François Roustang et Nicolas Duruz, deux auteurs qui ont beaucoup écrit sur la psychothérapie et son évolution.
Resumo:
We survey the main theoretical aspects of models for Mobile Ad Hoc Networks (MANETs). We present theoretical characterizations of mobile network structural properties, different dynamic graph models of MANETs, and finally we give detailed summaries of a few selected articles. In particular, we focus on articles dealing with connectivity of mobile networks, and on articles which show that mobility can be used to propagate information between nodes of the network while at the same time maintaining small transmission distances, and thus saving energy.
Resumo:
Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.
Resumo:
In the Morris water maze (MWM) task, proprioceptive information is likely to have a poor accuracy due to movement inertia. Hence, in this condition, dynamic visual information providing information on linear and angular acceleration would play a critical role in spatial navigation. To investigate this assumption we compared rat's spatial performance in the MWM and in the homing hole board (HB) tasks using a 1.5 Hz stroboscopic illumination. In the MWM, rats trained in the stroboscopic condition needed more time than those trained in a continuous light condition to reach the hidden platform. They expressed also little accuracy during the probe trial. In the HB task, in contrast, place learning remained unaffected by the stroboscopic light condition. The deficit in the MWM was thus complete, affecting both escape latency and discrimination of the reinforced area, and was thus task specific. This dissociation confirms that dynamic visual information is crucial to spatial navigation in the MWM whereas spatial navigation on solid ground is mediated by a multisensory integration, and thus less dependent on visual information.
Resumo:
This study analyzed the spatial memory capacities of rats in darkness with visual and/or olfactory cues through ontogeny. Tests were conducted with the homing board, where rats had to find the correct escape hole. Four age groups (24 days, 48 days, 3-6 months, and 12 months) were trained in 3 conditions: (a) 3 identical light cues; (b) 5 different olfactory cues; and (c) both types of cues, followed by removal of the olfactory cues. Results indicate that immature rats first take into account olfactory information but are unable to orient with only the help of discrete visual cues. Olfaction enables the use of visual information by 48-day-old rats. Visual information predominantly supports spatial cognition in adult and 12-month-old rats. Results point out cooperation between vision and olfaction for place navigation during ontogeny in rats.
Resumo:
This paper explores the extent and limits of non-state authority in international affairs. While a number of studies have emphasised the role of state support and the ability of strategically situated actors to capture regulatory processes, they often fail to unpack the conditions under which this takes place. In order to probe the assumption that structural market power, backed by political support, equates regulatory capture, the article examines the interplay of political and economic considerations in the negotiations to establish worldwide interoperability standards needed for the development of Galileo as a genuinely European global navigation satellite system under civil control. It argues that industries supported and identified as strategic by public actors are more likely to capture standardisation processes than those with the largest market share expected to be created by the standards. This suggests that the influence of industries in space, air and maritime traffic control closely related to the militaro-industrial complex remains disproportionate in comparison to the prospective market of location-based services expected to vastly transform business practices, labour relations and many aspects of our daily life.