995 resultados para Natural stump removal
Resumo:
A number of contaminants such as arsenic, cadmium and lead are released into the environment from natural and anthropogenic sources contaminating food and water. Chronic oral ingestion of arsenic, cadmium and lead is associated with adverse effects in the skin, internal organs and nervous system. In addition to conventional methods, biosorption using inactivated biomasses of algae, fungi and bacteria has been introduced as a novel method for decontamination of toxic metals from water. The aim of this work was to evaluate the applicability of lactic acid bacteria as tools for heavy metal removal from water and characterize their properties for further development of a biofilter. The results established that in addition to removal of mycotoxins, cyanotoxins and heterocyclic amines, lactic acid bacteria have a capacity to bind cationic heavy metals, cadmium and lead. The binding was found to be dependent on the bacterial strain and pH, and occurred rapidly on the bacterial surface, but was reduced in the presence of other cationic metals. The data demonstrates that the metals were bound by electrostatic interactions to cell wall components. Transmission electron micrographs showed the presence of lead deposits on the surface of biomass used in the lead binding studies, indicating involvement of another uptake/binding mechanism. The most efficient strains bound up to 55 mg Cd and 176 mg Pb / g dry biomass. A low removal of anionic As(V) was also observed after chemical modification of the cell wall. Full desorption of bound cadmium and lead using either dilute HNO3 or EDTA established the reversibility of binding. Removal of both metals was significantly reduced when biomass regenerated with EDTA was used. Biomass regenerated with dilute HNO3 retained its cadmium binding capacity well, but lead binding was reduced. The results established that the cadmium and lead binding capacity of lactic acid bacteria, and factors affecting it, are similar to what has been previously observed for other biomasses used for the same purpose. However, lactic acid bacteria have a capacity to remove other aqueous contaminants such as cyanotoxins, which may give them an additional advantage over the other alternatives. Further studies focusing on immobilization of biomass and the removal of several contaminants simultaneously using immobilized bacteria are required.
Resumo:
A BASIC computer program (REMOVAL) was developed to compute in a VAXNMS environment all the calculations of the removal method for population size estimation (catch-effort method for closed populations with constant sampling effort). The program follows the maximum likelihood methodology,checks the failure conditions, applies the appropriate formula, and displays the estimates of population size and catchability, with their standard deviations and coefficients of variation, and two goodness-of-fit statistics with their significance levels. Data of removal experiments for the cyprinodontid fish Aphanius iberus in the Alt Emporda wetlands are used to exemplify the use of the program
Resumo:
Cation exchange capabilities of a Brazilian natural zeolite, identified as scolecite, were evaluated for application in wastewater control. We investigated the process of sorption of chromium(III), nickel(II), cadmium(II) and manganese(II) in synthetic aqueous effluents, including adsorption isotherms of single-metal solutions. The natural zeolite showed the ability to take up the tested heavy metals in the order Cr(III) > Cd(II) > Ni(II) > Mn(II), and this could be related to the valence and the hydration radius of the metal cations. The influence of temperature (25, 40 and 60 ºC) and initial pH value (from 4 to 6) was also evaluated. It was found that the adsorption increased substantially when the temperature was raised to 60 ºC and that maximum adsorption capacity was observed at pH 6. These results demonstrate that scolecite can be used for removal of heavy metals from aqueous effluents, under optimized conditions.
Resumo:
This study evaluated the adsorption capacity of chromium from contaminated aqueous solutions by using Moringa oleifera Lam. seeds. Parameters such as solution pH, adsorbent mass, contact time between solution and adsorbent, isotherms, thermodynamic, kinetics, and desorption were evaluated. The maximum adsorption capacity (Qm) calculated to be 3.191 mg g-1 for the biosorbent. Activated carbon was used for comparison purposes in addition to the biosorbent. The best fit was obtained by the Langmuir model for both adsorbents. The average desorption value indicated that both the biosorbent and activated carbon have a strong interaction with the metal. The results showed that the biosorbent has advantages owing to its low cost and efficiency in Cr3+ removal from contaminated waters.
Resumo:
We tested the influence of the aril on seed germination in controlled conditions and on the removal of M. champaca seeds in natural environment. Germination assays were kept at 25 ± 2 °C under continuous white light. Removal experiments were carried out in three "old" (39 to 62-years old) and three "new" (15-years old) eucalypt stands in Horto Florestal Navarro de Andrade, Rio Claro, SP. The results show that the aril inhibits the germination and the seeds exhibit a positively photoblastic reaction. We found higher seed removal in old eucalypt stands than the new ones, probably due to the higher density of rodents in the old stands. In the new stands, we found higher seed removal of arillated seeds by ants. Ants are important to remove the aril of seeds dropped by birds, not only enhancing seed germination but also preventing seed predation by rodents.
Resumo:
The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.
Resumo:
Objective: to evaluate natural evolution of right diaphragmatic injury after the surgical removal of a portion from hemi diaphragm. Methods: the animals were submitted to a surgical removal of portion from right hemi diaphragm by median laparotomy. The sample consists of 42 animals being 2 animals from pilot project and 40 operated animals. And the variables of the study were herniation, liver protection, healing, persistent diaphragm injury, evaluation of 16 channels tomography and the variables "heart rate" and "weight". Results: we analyzed 40 mice, we had two post-operative deaths; we had 17 animals in this group suffered from herniation (42.5%) and 23 animals didn't suffer from herniation (57.5%). Analyzing the tomography as image method in the evaluation of diaphragmatic hernia, we had as a method with good sensitivity (78.6%), good specificity (90.9%), and good accuracy (86.1%) when compared to necropsy. Conclusion: there was a predominance of healing of right hemi diaphragm, the size of initial injury didn't have influence on occurrence of the liver protection or hernia in mice.
Resumo:
Heavy metals are major toxic pollutants with severe health effects on humans. They are released into the environment from a variety of industrial activities. Cadmium, lead, zinc, chromium and copper are the most toxic metals of widespread use in industries such as tanning, electroplating, electronic equipment manufacturing and chemical processing plants. Heavy metals contribute to a variety of adverse health environmental effects due to their acute and chronic exposure through air, water and food chain. Conventional treatment methods of metal removal are often limited by their cost and ineffectiveness at low concentrations. Adsorption, the use of inactivated biomass as adsorbents offers an attractive potential alternative to their conventional methods. Mango peel and Alisma plantago aquatica are naturally occurring and abundant biomass can offer an economical solution for metal removal.The Cd(II), Pb(II), Zn(II), Cr(III) and Cu(II) adsorption by milled adsorbents of mango peel and Alisma plantago aquatica were evaluated in batches.
Resumo:
The term ‘water pollution’ broadly refers to the contamination of water and water bodies (e.g. lakes, rivers, oceans, groundwater etc). Water pollution occurs when pollutants are discharged directly or indirectly into water bodies without adequate treatment to remove the harmful contaminants. This affects not only the plants and organisms living in these bodies of water but also the entire natural biological communities and the biodiversity.Advanced Oxidation Processes (AOPs) have been tested as environment-friendly techniques for the treatment of contaminated water, in view of their ability to convert pollutants into harmless end products. These techniques refer to a set of treatment procedures designed to remove organic or inorganic contaminants in wastewater by oxidation. The contaminants are oxidized by different reagents such as air, oxygen, ozone, and hydrogen peroxide which are introduced in precise, preprogrammed dosages, sequences and combinations under appropriate conditions. The procedure when combined with light in presence of catalyst is known as photocatalysis. When ultrasound (US) is used as the energy source, the process is referred as sonication. Sonication in presence of catalyst is referred as sonocatalysis. Of late, combination of light and sound as energy sources has been tested for the decontamination of wastewater in the presence of suitable catalyst. In this case, the process is referred as sonophotocatalysis. These AOPs are specially advantageous in pollution control and waste water treatment because unlike many other technologies, they do not just transfer the pollutant from one phase to another but completely degrade them into innocuous substances such as CO2 and H2O.
Resumo:
Background Siglec-7, a sialic acid binding inhibitory receptor expressed by NK cells is masked in vivo by a so far unknown ligand. It shows a strong binding prevalence for α-2,8-linked disialic acids in vitro. Results Here we describe the expression of PSA-NCAM (α-2,8-linked polysialic acid modified NCAM) on functional adult peripheral blood natural killer cells and examine its possible role in masking Siglec-7. Unmasking of Siglec-7 using Clostridium perfringens neuraminidase massively reduces NK cell cytotoxicity. By contrast a specific removal of PSA using Endo-NF does not lead to a reduction of NK cell cytotoxicity. Conclusion The results presented here therefore indicate that PSA-NCAM is not involved in masking Siglec-7.
Resumo:
Polysaccharide natural seed coat from the tree Magonia pubescens, in the form of hydrogel was used to remove metals in aqueous solution. Swelling tests indicate that seed coat presents hydrogel behavior, with maximum water absorption of 292 g water/g. Adsorption experiments performed using Na(+), Mg(2+), K(+), Ca(2+), Cr(3+), Fe(3+) and Zn(2+) demonstrated that the polysaccharide structure has a high capacity to extract these ions from the aqueous solution. Scanning electron microscopy revealed significant morphological changes of the material before and after water contact. Differential scanning calorimetry measurements indicate a signal shift of the water evaporation temperature in the material with adsorbed zinc. X-ray photoelectron spectroscopy analysis combined with theoretical studies by the density functional theory and on Hartree-Fock (HF) level evidence that the metallic ions were adsorbed through coordination with hydroxyl groups of polysaccharide. In the case of Zn(2+) the lowest HF energy was observed for the tetracoordination mode, where Zn(2+) is coordinated by two hydroxyl groups and two water molecules.
Resumo:
This work assesses the efficiency of polyacrylamides for natural organic matter (NOM) removal from Paraiba do Sul River (Brazil) raw water for drinking purposes. Jar tests were performed following an experimental design protocol. Three kinds of polyacrylamides (anionic, cationic, and non-ionic) at 0.2 mg L(-1) were tested. After coagulation, turbidity, DOC, UVA(254) and SCAN (UV-absorbing material) were determined. Color and pH were also measured. It was found that polyacrylamides did not reduce the amounts of alum and lime needed in the process and that the amount of alum alone for removing UV-absorbing organic matter is significantly higher. Efficiency of the coagulation process decreased as follows: non-ionic -> cationic -> anionic -> no polyacrylamide. Removal efficiencies for the best case were: 100%, 90%, 83%, and 68% for turbidity, DOC, UVA(254), and SCAN, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of the natural gas is growing year after year in the whole world and also in Brazil. It is verified that in the last five years the profile of natural gas consumption reached a great advance and investments had been carried through in this area. In the oil industry, the use of the natural gas for fuel in the drive of engines is usual for a long date. It is also used to put into motion equipment, or still, to generate electric power. Such engines are based on the motor cycle of combustion Otto, who requires a natural gas with well definite specification, conferring characteristic anti-detonating necessary to the equipment performance for projects based on this cycle. In this work, process routes and thermodynamic conditions had been selected and evaluated. Based on simulation assays carried out in commercial simulators the content of the methane index of the effluent gas were evaluated at various ranges of pressure, temperature, flowrate, molecular weight and chemical nature and composition of the absorbent. As final result, it was established a route based on process efficiency, optimized consumption of energy and absorbent. Thereby, it serves as base for the compact equipment conception to be used in locu into the industry for the removal of hydrocarbon from the natural gas produced
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents in its composition gaseous contaminants such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). Hydrogen sulfide, which commonly occurs in oil and gas exploration and production activities, besides being among the gases that are responsible by the acid rain and greenhouse effect, can also cause serious harm to health, leading even to death, and damages to oil and natural gas pipelines. Therefore, the removal of hydrogen sulfide will significantly reduce operational costs and will result in oil with best quality to be sent to refinery, thereby resulting in economical, environmental, and social benefits. These factors highlight the need for the development and improvement of hydrogen sulfide sequestrating agents to be used in the oil industry. Nowadays there are several procedures for hydrogen sulfide removal from natural gas used by the petroleum industry. However, they produce derivatives of amines that are harmful to the distillation towers, form insoluble precipitates that cause pipe clogging and produce wastes of high environmental impact. Therefore, the obtaining of a stable system, in inorganic or organic reaction media, that is able to remove hydrogen sulfide without forming by-products that affect the quality and costs of natural gas processing, transport and distribution is of great importance. In this context, the evaluation of the kinetics of H2S removal is a valuable procedure for the treatment of natural gas and disposal of the byproducts generated by the process. This evaluation was made in an absorption column packed with Raschig ring, where natural gas with H2S passes through a stagnant solution, being the contaminant absorbed by it. The content of H2S in natural gas in column output was monitored by an H2S analyzer. The comparison between the obtained curves and the study of the involved reactions have not only allowed to determine the efficiency and mass transfer controlling step of the involved processes but also make possible to effect a more detailed kinetic study and evaluate the commercial potential of each reagent