989 resultados para Natural killer
Resumo:
Rhesus macaques infected with the WE strain of lymphocytic choriomeningitis virus (LCMV-WE) serve as a model for human infection with Lassa fever virus. To identify the earliest events of acute infection, rhesus macaques were monitored immediately after lethal infection for changes in peripheral blood mononuclear cells (PBMCs). Changes in CD3, CD4, CD8 and CD20 subsets did not vary outside the normal fluctuations of these blood cell populations; however, natural killer (NK) and γδ T cells increased slightly on day 1 and then decreased significantly after two days. The NK subsets responsible for the decrease were primarily CD3-CD8+ or CD3-CD16+ and not the NKT (primarily CD3+CD56+) subset. Macaques infected with a non-virulent arenavirus, LCMV-Armstrong, showed a similar drop in circulating NK and γδ T cells, indicating that this is not a pathogenic event. V³9 T cells, representing the majority of circulating γδ T cells in rhesus macaques, displayed significant apoptosis when incubated with LCMV in cell culture; however, the low amount of cell death for virus-co-cultured NK cells was insufficient to account for the observed disappearance of this subset. Our observations in primates are similar to those seen in LCMV-infected mice, where decreased circulating NK cells were attributed to margination and cell death. Thus, the disappearance of these cells during acute hemorrhagic fever in rhesus macaques may be a cytokine-induced lymphopenia common to many virus infections.
Resumo:
Natural killer (NK) cells are capable of directly recognizing pathogens, pathogen-infected cells, and transformed cells. NK cells recognize target cells using approximately 100 germ-line encoded receptors, which display activating or inhibitory function. NK cell activation usually requires the engagement of more than one receptor, and these may contribute distinct signaling inputs that are required for the firm adhesion of NK cells to target cells, polarization, and the release of cytotoxic granules, as well as the production of cytokines. In this article we discuss receptor-mediated mechanisms that counteract NK cell activation. The distinct intracellular inhibitory signaling pathways and how they can dominantly interfere with NK cell activation signaling events are discussed first. In addition, mechanisms by which inhibitory receptors modulate cellular activation at the level of receptor-ligand interactions are described. Receptor-mediated inhibition of NK cell function serves three main purposes: ensuring tolerance of NK cells to normal cells, enabling NK cell responses to aberrant host cells that have lost an inhibitory ligand, and, finally, allowing the recognition of certain pathogens that do not express inhibitory ligands.
Resumo:
Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors and explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.
Resumo:
The effector response of natural killer (NK) cells is determined by opposing signals received through activating and inhibitory receptors. A process termed NK cell education, which is guided by the recognition of Major Histocompatibility Complex class I (MHC-I) molecules, determines how efficiently activating receptors respond to stimulation. This ensures NK cell tolerance to healthy tissues while allowing robust responses to diseased host cells. It was thought that NK cells are educated during their development in the bone marrow and that education fixes the NK cells' functional properties. However, recent findings suggest that the function of mature peripheral NK cells can adapt to changes in their environment and that the persistent exposure to normal-self is essential to maintain NK cell reactivity. Notwithstanding, NK cell stimulation in the context of inflammation can stably improve the functional properties of NK cells.
Resumo:
La tuberculosi pot localitzar-se al pulmó: TB-P o altres òrgans: TB-EP, segons el compromís del sistema immunitari de l’hoste, on hi intervenen les cèl.lules Natural Killer-NK. L’estudi analitza el percentatge i número absolut d’NK i l’expressió dels receptors d’activació, NKG2D - NKp46, en 15 malalts/TB-P, 15 malalts/TB-EP i 15 sans, trobant-se augmentades en percentatge en el grup TB-P, disminuïdes en número absolut en els TB-EP i TB-P, i valors més alts d’ NKG2D, sobretot, malalts de TB-EP. Les coincidències amb d’altres estudis i les troballes preliminars obren possibilitats a investigacions en el camp de la TB-EP i la reacció immune.
Resumo:
An unusual subset of mature T cells expresses natural killer (NK) cell-related surface markers such as interleukin-2 receptor beta (IL-2R beta; CD122) and the polymorphic antigen NK1.1. These "NK-like" T cells are distinguished by their highly skewed V alpha and V beta repertoire and by their ability to rapidly produce large amounts of IL-4 upon T cell receptor (TCR) engagement. The inbred mouse strain SJL (which expresses NK1.1 on its NK cells) has recently been reported to lack NK1.1+ T cells and consequently to be deficient in IL-4 production upon TCR stimulation. We show here, however, that SJL mice have normal numbers of IL-2R beta+ T cells with a skewed V beta repertoire characteristic of "NK-like" T cells. Furthermore lack of NK1.1 expression on IL-2R beta+ T cells in SJL mice was found by backcross analysis to be controlled by a single recessive gene closely linked to the NKR-P1 complex on chromosome 6 (which encodes the NK1.1 antigen). Analysis of a panel of inbred mouse strains further demonstrated that lack of NK1.1 expression on IL-2R beta+ T cells segregated with NKR-P1 genotype (as assessed by restriction fragment length polymorphism) and thus was not restricted to the SJL strain. In contrast, defective TCR induced IL-4 production (which appeared to be a unique property of SJL mice) seems to be controlled by two recessive genes unlinked to NKR-P1. Collectively, our data indicate that "NK-like" T cells develop normally in SJL mice despite genetically distinct defects in NK1.1 expression and inducible IL-4 production.
Resumo:
Polyclonal rabbit anti-thymocyte globulin (rATG) is widely used in solid organ transplantation (SOT) as induction therapy or to treat corticosteroid-resistant rejection. In vivo, the effect of rATG on natural killer (NK) cells has not been studied. These cells are of particular relevance after SOT because classical immunosuppressive drugs do not inhibit or even can activate NK cells. A cohort of 20 recipients at low immunological risk, that had been receiving rATG as induction therapy, was analyzed for receptor repertoire, cytotoxicity and capacity of NK cells to secrete IFN-γ before kidney transplantation and at different time points thereafter. NK cells expressed fewer killer-cell immunoglobulin-like receptors (KIR), fewer activating receptors NKG2D, but more inhibitory receptor NKG2A compatible with an immature phenotype in the first 6 months post transplantation. Both cytotoxicity of NK cells and the secretion of IFN-γ were preserved over time after transplantation.
Resumo:
Human cytomegalovirus (CMV) infection may be a serious complication related to immunosuppression after solid organ transplantation. Due to their cytotoxicity, T-cells and natural killer (NK) cells target and clear the virus from CMV-infected cells. Although immunosuppressive drugs suppress T-cell proliferation and activation, they do not affect NK cells that are crucial for controlling the infection. The regulation of NK cells depends on a wide range of activating and inhibitory receptors such as the family of killer-cell immunoglobulin-like receptors (KIRs). Several human genetic studies have demonstrated the association of KIR genes with the clearance of infections. Since the respective activities of the different KIR proteins expressed by NK cells during CMV infection have not been extensively studied, we analyzed the expression of KIRs in a cohort of 22 CMV-IgG(+) renal transplant patients at the time of CMV reactivation, after antiviral therapy and 6 months later. Our data revealed a marked expression of KIR3DL1 during the acute phase of the reactivation. We set up an in vitro model in which NK cells, derived either from healthy donors or from transplanted patients, target allogeneic fibroblasts, CMV-infected or uninfected. Our results demonstrate a significant correlation between the lysis of CMV-infected fibroblasts and the expression of KIR3DL1. Blocking experiments with antibodies to MHC-I, to NKG2D and to NKG2C confirmed the importance of KIR3DL1. Consequently, our results suggest that KIR proteins and especially KIR3DL1 could play an important role during CMV-infection or CMV reactivation in immunosuppressed patients.
Resumo:
Natural killer (NK) cell function is negatively regulated by inhibitory receptors interacting with major histocompatibility complex class I molecules expressed on target cells. Here we show that the inhibitory Ly49A NK cell receptor not only binds to its H-2D(d) ligand expressed on potential target cells (in trans) but also is constitutively associated with H-2D(d) in cis (on the same cell). Cis association and trans interaction occur through the same binding site. Consequently, cis association restricts the number of Ly49A receptors available for binding of H-2D(d) on target cells and reduces NK cell inhibition through Ly49A. By lowering the threshold at which NK cell activation exceeds NK cell inhibition, cis interaction allows optimal discrimination of normal and abnormal host cells.
Resumo:
Natural killer (NK) cells show enhanced functional competence when they express inhibitory receptors specific for inherited major histocompatibility complex class I (MHC-I) molecules. Current models imply that NK cell education requires an interaction of inhibitory receptors with MHC-I expressed on other cells. However, the inhibitory Ly49A receptor can also bind MHC-I ligand on the NK cell itself (in cis). Here we describe a Ly49A variant, which can engage MHC-I expressed on other cells but not in cis. Even though this variant inhibited NK cell effector function, it failed to educate NK cells. The association with MHC-I in cis sequestered wild-type Ly49A, and this was found to relieve NK cells from a suppressive effect of unengaged Ly49A. These data explain how inhibitory MHC-I receptors can facilitate NK cell activation. They dissociate classical inhibitory from educating functions of Ly49A and suggest that cis interaction of Ly49A is necessary for NK cell education.
Resumo:
Natural killer (NK) cellsexpress receptors specific for class I major histocompatibility complex (MHC) molecules. In the mouse, the class I specific receptors identified to date belong to the polymorphic Ly49 receptor family. Engagement of Ly49 receptors with their respective MHC ligands results in negative regulation of NK cell effector functions, consistent with a critical role of these receptors in "missing self" recognition. The Ly49 receptors analyzed so far are clonally distributed such that multiple distinct Ly49 receptors can be expressed by individual NK cells (for review see refs. 1-3). The finding that most NK cells that express the Ly49A receptor do so from a single Ly49A allele (whereby expression can occur from the maternal or the paternal chromosome) may thus reflect a putative receptor distribution process that restricts the number of Ly49 receptors expressed in a single NK cell (3-5).
Resumo:
The Ly49 natural killer (NK)-cell receptor family comprises both activating and inhibitory members, which recognize major histocompatibility complex (MHC) class I or MHC class I-related molecules and are involved in target recognition. As previously shown, the Ly49E receptor fails to bind to a variety of soluble or cell-bound MHC class I molecules, indicating that its ligand is not an MHC class I molecule. Using BWZ.36 reporter cells, we demonstrate triggering of Ly49E by the completely distinct, non-MHC-related protein urokinase plasminogen activator (uPA). uPA is known to be secreted by a variety of cells, including epithelial and hematopoietic cells, and levels are up-regulated during tissue remodeling, infections, and tumorigenesis. Here we show that addition of uPA to Ly49E-positive adult and fetal NK cells inhibits interferon-gamma secretion and reduces their cytotoxic potential, respectively. These uPA-mediated effects are Ly49E-dependent, as they are reversed by addition of anti-Ly49E monoclonal antibody and by down-regulation of Ly49E expression using RNA interference. Our results suggest that uPA, besides its established role in fibrinolysis, tissue remodeling, and tumor metastasis, could be involved in NK cell-mediated immune surveillance and tumor escape.
Resumo:
Shedding of intercellular adhesion molecule 1 (ICAM-1) is believed to play a role in tumor cell resistance to cell-mediated cytotoxicity. However, the mechanism whereby ICAM-1 is shed from the surface of tumor cells remains unclear. In this study, we have addressed the possibility that matrix metalloproteinases are implicated in ICAM-1 shedding. Our observations suggest a functional relationship between ICAM-1 and matrix metalloproteinase 9 (MMP-9) whereby ICAM-1 provides a cell surface docking mechanism for proMMP-9, which, upon activation, proteolytically cleaves the extracellular domain of ICAM-1 leading to its release from the cell surface. MMP-9-dependent shedding of ICAM-1 is found to augment tumor cell resistance to natural killer (NK) cell-mediated cytotoxicity. Taken together, our observations propose a mechanism for ICAM-1 shedding from the cell surface and provide support for MMP involvement in tumor cell evasion of immune surveillance.
Resumo:
PURPOSE: As a first step for the development of a new cancer immunotherapy strategy, we evaluated whether antibody-mediated coating by MHC class I-related chain A (MICA) could sensitize tumor cells to lysis by natural killer (NK) cells. EXPERIMENTAL DESIGN: Recombinant MICA (rMICA) was chemically conjugated to Fab' fragments from monoclonal antibodies specific for tumor-associated antigens, such as carcinoembryonic antigen, HER2, or CD20. RESULTS: Flow cytometry analysis showed an efficient coating of MICA-negative human cancer cell lines with the Fab-rMICA conjugates. This was strictly dependent on the expression of the appropriate tumor-associated antigens in the target cells. Importantly, preincubation of the tumor cells with the appropriate Fab-rMICA conjugate resulted in NK cell-mediated tumor cell lysis. Antibody blocking of the NKG2D receptor in NK cells prevented conjugate-mediated tumor cell lysis. CONCLUSIONS: These results open the way to the development of immunotherapy strategies based on antibody-mediated targeting of MICA.
Resumo:
Natural Killer (NK) cells are of special interest in solid organ transplantation (SOT) because classical immunosuppressive drugs could enhance NK cells activity.We studied NK cells after kidney transplantation in three different situations. First, we analysed the peripheral repertoire reconstitution and function of NK cells after a polyclonal rabbit anti-thymocytes globulin (rATG) induction therapy, in 20 patients transplanted with living donor and with a low immunological risk. Second, we analysed the influence of KIR genes on the risk of CMV primo-infection or reactivation in 224 transplanted patients during the first year. Finally, we studied the risk of rejection and graft function during the first 5 years according to the KIR genes. Our study demonstrates that after an intial drop, NK cell reconstitution is fast with a ratio of CD56+/CD3− cells versus CD3+ cells that remains identical. The fraction of NK cells expressing the inhibitory receptor NKG2A significantly increases and the activating receptor NKG2D decreases after transplantation to retrieve the pretransplantation value after one year. The secretion of INF-f × and the cytotoxicity is maintained over time after transplantation. Then, we demonstrated that the presence of 2 KIR missing ligands and a large number of activating KIR gene protected against CMV primo-infection or reactivation during the first year post transplantation. Finally, the KIR genes and their HLA ligands do not influence the long term graft function after univariate and multivariate analysis. Our data suggest that despite the modification of the receptor repertoire, NK cell activity is preserved. NK cells are an important player of the immune response in the first year after transplantation mainly thanks to their anti-infectious activity.