996 resultados para Natural aging
Resumo:
Prostate differentiation during embryogenesis and its further homeostatic state maintenance during adult life depend on androgens. Abundant biological data suggest that androgens play an important role in the development of the prostate cancer and other prostatic diseases. The objective of this work was to evaluate the effects of the testosterone supplementation in gerbil (a new experimental model) at different ages. Tissues from experimental animals were studied by histological and histochemistry procedures, androgen receptor immunohistochemistry assay, morphometric-stereological analysis, and transmission electron microscopy (TEM). After the treatment were observed increase of prostate weight and epithelium height in all ages studied. In some adult and aged treated animals, hyperplasic and displasic process were observed, including prostatic intraepithelial neoplasias and adenocarcinomas. Increase of the thickness of the smooth muscle cell (SMC) layer was observed in pubescent and adult animals and TEM revealed apparent SMC hypertrophy. An apparent increase in the frequency of blood vessels distributed by the subepithelial stroma in the treated animals was noticed. Reversion of the natural effects of aging on the prostate was observed in the aged treated animals in some acini of the gland. These data demonstrate that the gerbil prostate is susceptible to androgenic action at the studied ages and it can serve, for example, as experimental model to studies of prostate neoplasic process induction and hormonal therapy in aged animals.
Resumo:
The Y chromosomes are genetically degenerated and do not recombine with their matching partners X. Recombination of XX pairs is pointed out as the key factor for the Y chromosome degeneration. However, there is an additional evolutionary force driving sex-chromosomes evolution. Here we show this mechanism by means of two different evolutionary models, in which sex chromosomes with non-recombining XX and XY pairs of chromosomes is considered. Our results show three curious effects. First, we observed that even when both XX and XY pairs of chromosomes do not recombine, the Y chromosomes still degenerate. Second, the accumulation of mutations on Y chromosomes followed a completely different pattern then those accumulated on X chromosomes. and third, the models may differ with respect to sexual proportion. These findings suggest that a more primeval mechanism rules the evolution of Y chromosomes due exclusively to the sex-chromosomes asymmetry itself, i.e., the fact that Y chromosomes never experience female bodies. Over aeons, natural selection favored X chromosomes spontaneously, even if at the very beginning of evolution, both XX and XY pairs of chromosomes did not recombine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
Pós-graduação em Ciência e Tecnologia de Materiais - FC
Resumo:
This qualitative study was developed with 117 healthcare professionals and undergraduate students who were participants of a non-verbal communication training program in gerontology, with the objective to identify the perception and understanding of healthcare undergraduates and graduates regarding aging and the elderly. The results allowed the construction of the following categories: an evolution of life that brings a variety of experiences; natural, mysterious and with accumulated experiences; a decrease in overall happiness due to an increase in isolation; a time of valuing affection and respect; an inevitable stage including distress, prejudice, and limitations worthy of attention; a natural consequence of life; and the presence of disease and the global physiological process. Regarding perceptions of the elderly, the answers were classified as positive, negative, mixed and neutral. We considered that the understanding regarding the elderly and aging was limited and pessimist, indicating a need to become aware that one's views affect the way we relate to others.
Resumo:
Clinical, epidemiological, and pathological aspects of trypanosomiasis caused by Trypanosoma vivax in calves were reported for the first time in northeast Brazil. Clinical and epidemiological data, packed cell volumes (PCV), and parasitemia were assessed in 150 calves in May 2009 (rainy season-survey 1) and in 153 calves in November 2009 (dry season-survey 2) in three farms (A, B, and C). Prevalence of T. vivax in calves examined in the survey 1 was 63.3%, 65.0%, and 80.0% in farms A, B, and C, respectively. Morbidity varied from 63.3% to 80%, mortality from 15% to 30% and lethality from 23% to 37.5%. In survey 1, for all farms, high parasitemia (from 30.3 to 26.2x10(6) parasites/mL), fever (from 39.8 to 40.3 degrees C), low PCV (from 15.7% to 18.1%), and body score (from 2.5 to 3.5) were detected. Calves showed depression, weight loss, pale mucous membranes, enlarged lymph nodes, edema of the dewlap, cough, coryza, and diarrhea. The animals from farms A and B were treated with diminazene aceturate. Six months after, in survey 2, non-treated calves from farm C showed values for prevalence (81.82), morbidity (81.82), mortality (12.73), and lethality (15.55) similar to those in survey 1 (P>0.05). Also in survey 2, four calves aging merely 1-3 days old presented high parasitemia levels (from 32x10(6) to 74x10(6) parasites/mL), suggesting transplacental transmission. In conclusion, trypanosomiasis by T. vivax constitutes high prevalent disease for calves raised in Brazilian semiarid and may have transplacental transmission.
Resumo:
Outdoor bronzes exposed to the environment form naturally a layer called patina, which may be able to protect the metallic substrate. However, since the last century, with the appearance of acid rains, a strong change in the nature and properties of the copper based patinas occurred [1]. Studies and general observations have established that bronze corrosion patinas created by acid rain are not only disfiguring in terms of loss of detail and homogeneity, but are also unstable [2]. The unstable patina is partially leached away by rainwater. This leaching is represented by green streaking on bronze monuments [3]. Because of the instability of the patina, conservation techniques are usually required. On a bronze object exposed to the outdoor environment, there are different actions of the rainfall and other atmospheric agents as a function of the monument shape. In fact, we recognize sheltered and unsheltered areas as regards exposure to rainwater [4]. As a consequence of these different actions, two main patina types are formed on monuments exposed to the outdoor environment. These patinas have different electrochemical, morphological and compositional characteristics [1]. In the case of sheltered areas, the patina contains mainly copper products, stratified above a layer strongly enriched in insoluble Sn oxides, located at the interface with the uncorroded metal. Moreover, different colors of the patina result from the exposure geometry. The surface color may be pale green for unsheltered areas, and green and mat black for sheltered areas [4]. Thus, in real outdoor bronze monuments, the corrosion behavior is strongly influenced by the exposure geometry. This must be taken into account when designing conservation procedures, since the patina is in most cases the support on which corrosion inhibitors are applied. Presently, for protecting outdoor bronzes against atmospheric corrosion, inhibitors and protective treatments are used. BTA and its derivatives, which are the most common inhibitors used for copper and its alloy, were found to be toxic for the environment and human health [5, 6]. Moreover, it has been demonstrated that BTA is efficient when applied on bare copper but not as efficient when applied on bare bronze [7]. Thus it was necessary to find alternative compounds. Silane-based inhibitors (already successfully tested on copper and other metallic substrates [8]), were taken into consideration as a non-toxic, environmentally friendly alternative to BTA derivatives for bronze protection. The purpose of this thesis was based on the assessment of the efficiency of a selected compound, to protect the bronze against corrosion, which is the 3-mercapto-propyl-trimethoxy-silane (PropS-SH). It was selected thanks to the collaboration with the Corrosion Studies Centre “Aldo Daccò” at the Università di Ferrara. Since previous studies [9, 10, 11] demonstrated that the addition of nanoparticles to silane-based inhibitors leads to an increase of the protective efficiency, we also wanted to evaluate the influence of the addition of CeO2, La2O3, TiO2 nanoparticles on the protective efficiency of 3-mercapto-propyl-trimethoxy-silane, applied on pre-patinated bronze surfaces. This study is the first section of the thesis. Since restorers have to work on patinated bronzes and not on bare metal (except for contemporary art), it is important to be able to recreate the patina, under laboratory conditions, either in sheltered or unsheltered conditions to test the coating and to obtain reliable results. Therefore, at the University of Bologna, different devices have been designed to simulate the real outdoor conditions and to create a patina which is representative of real application conditions of inhibitor or protective treatments. In particular, accelerated ageing devices by wet & dry (simulating the action of stagnant rain in sheltered areas [12]) and by dropping (simulating the leaching action of the rain in unsheltered areas [1]) tests were used. In the present work, we used the dropping test as a method to produce pre-patinated bronze surfaces for the application of a candidate inhibitor as well as for evaluating its protective efficiency on aged bronze (unsheltered areas). In this thesis, gilded bronzes were also studied. When they are exposed to the outside environment, a corrosion phenomenon appears which is due to the electrochemical couple gold/copper where copper is the anode. In the presence of an electrolyte, this phenomenon results in the formation of corrosion products than will cause a blistering of the gold (or a break-up and loss of the film in some cases). Moreover, because of the diffusion of the copper salts to the surface, aggregates and a greenish film will be formed on the surface of the sample [13]. By coating gilded samples with PropS-SH and PropS-SH containing nano-particles and carrying out accelerated ageing by the dropping test, a discussion is possible on the effectiveness of this coating, either with nano-particles or not, against the corrosion process. This part is the section 2 of this thesis. Finally, a discussion about laser treatment aiming at the assessment of reversibility/re-applicability of the PropS-SH coating can be found in section 3 of this thesis. Because the protective layer loses its efficiency with time, it is necessary to find a way of removing the silane layer, before applying a new one on the “bare” patina. One request is to minimize the damages that a laser treatment would create on the patina. Therefore, different laser fluences (energy/surface) were applied on the sample surface during the treatment process in order to find the best range of fluence. In particular, we made a characterization of surfaces before and after removal of PropS-SH (applied on a naturally patinated surface, and subsequently aged by natural exposure) with laser methods. The laser removal treatment was done by the CNR Institute of Applied Physics “Nello Carrara” of Sesto Fiorentino in Florence. In all the three sections of the thesis, a range of non-destructive spectroscopic methods (Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM-EDS), μ-Raman spectroscopy, X-Ray diffractometry (XRD)) were used for characterizing the corroded surfaces. AAS (Atomic Absorption Spectroscopy) was used to analyze the ageing solutions from the dropping test in sections 1 and 2.
Resumo:
The free radical theory of aging postulates that aging is caused by damage induced by oxidative stress. Such stress is present when the production of reactive oxygen species (ROS) exceeds the cellular antioxidant capacity. Hydrogen peroxide (H2O2) is one of the most abundant ROS. It is produced as a by-product by several enzymes and acts as second messenger controlling the activity of numerous cellular pathways. To maintain H2O2 levels that are sufficiently high to allow signaling to occur, but low enough to prevent damage of cellular macromolecules, the production and removal of H2O2 must be tightly regulated.rnWhen we investigated the effects of peroxide stress in the nematode C. elegans, we found that exogenous as well as endogenous peroxide stress causes age-related symptoms. We identified 40 target proteins of hydrogen peroxide that contain cysteines that get oxidized upon peroxide stress. Oxidation of redox-sensitive cysteines has been shown to regulate numerous cellular functions and likely contributes to the peroxide-mediated decrease in motility, fertility, growth rate and ATP levels. By monitoring the oxidation status of proteins over the lifespan of C. elegans, we discovered that many of the identified peroxide-sensitive proteins are heavily oxidized at distinct stages in life. As the free radical theory of aging predicts, we found oxidation to be significantly elevated in senescent worms. However, we were also able to identify numerous proteins that were significantly oxidized during the development of C. elegans. To investigate whether a correlation exists between developmental oxidative stress and lifespan, we monitored protein oxidation in long- and short-lived strains. We found that protein oxidation in short-lived C. elegans larvae was significantly increased. Additionally short-lived worms were incapable of recovering from the oxidative stress experienced during development which resulted in the inability to establish reducing conditions for the following reproductive phase. Long-lived C. elegans, on the other hand, did only experience a mild increase in protein oxidation in the developmental phase and were able to recover faster from oxidative stress than wild type worms. rnBecause many proteins that are sensitive to oxidation by H2O2 became oxidized in aging C. elegans, we monitored endogenous hydrogen peroxide concentrations over C. elegans lifespan and discovered that peroxide levels are significantly elevated in development. This suggests that the observed developmental protein oxidation is peroxide-mediated. The early onset of oxidative stress might be a result of increased metabolic activity in C. elegans development but could also represent the requirement of ROS dependent signaling events. Our results indicate that longevity is dependent on the worm’s ability to cope with this early boost of oxidants.rn
Resumo:
Zinc chelates have been widely used to correct deficiencies in this micronutrient in different soil types and under different moisture conditions. The aging of the metal in soil could cause a change in its availability. Over time the most labile forms of Zn could decrease in activity and extractability and change to more stable forms. Various soil parameters, such as redox conditions, time, soil type and moisture conditions, affect the aging process and modify the solubility of the metal. In general, redox conditions influence pH and also the chemical forms dissolved in the soil solution. Soil pH also affects Zn solubility; at high pH values, most of the Zn is present in forms that are not bioavailable to plants. The objective of this study was to determine the changes in Zn over time in a soil solution in a waterlogged acidic soil to which synthetic and natural chelates were applied
Resumo:
Examination of the phenotypic effects of specific mutations has been extensively used to identify candidate genes affecting traits of interest. However, such analyses do not reveal anything about the evolutionary forces acting at these loci, or whether standing allelic variation contributes to phenotypic variance in natural populations. The Drosophila gene methuselah (mth) has been proposed as having major effects on organismal stress response and longevity phenotype. Here, we examine patterns of polymorphism and divergence at mth in population level samples of Drosophila melanogaster, D. simulans, and D. yakuba. Mth has experienced an unusually high level of adaptive amino acid divergence concentrated in the intra- and extracellular loop domains of the receptor protein, suggesting the historical action of positive selection on those regions of the molecule that modulate signal transduction. Further analysis of single nucleotide polymorphisms (SNPs) in D. melanogaster provided evidence for contemporary and spatially variable selection at the mth locus. In ten surveyed populations, the most common mth haplotype exhibited a 40% cline in frequency that coincided with population level differences in multiple life-history traits including lifespan. This clinal pattern was not associated with any particular SNP in the coding region, indicating that selection is operating at a closely linked site that may be involved in gene expression. Together, these consistently nonneutral patterns of inter- and intraspecific variation suggest adaptive evolution of a signal transduction pathway that may modulate lifespan in nature.
Resumo:
The Autonomous Region of Castilla-La Mancha develops from the approval of the Spanish Constitution a whole executive and legislative branch to implement its policies on environmental protection. The new legislation (Law 9/1999, of 26 May) has pursued the conservation and the integral protection of the natural elements of the territory demanding to new criteria as such the environmental quality of ecosystems or the exceptional landscape. The spread and the declaration of new natural spaces have caused a double geographical and territorial model. First, natural spaces located in rural mountainous areas with depopulation and aging problems. And second, natural spaces situated in areas densely populated
Resumo:
The effect of isothermal aging on the harmonic vibration durability of Sn3.0Ag0.5Cu solder interconnects is examined. Printed wiring assemblies with daisy-chained leadless chip resistors (LCRs) are aged at 125°C for 0, 100, and 500 hours. These assemblies are instrumented with accelerometers and strain gages to maintain the same harmonic vibration profile in-test, and to characterize PWB behavior. The tested assemblies are excited at their first natural frequencies until LCRs show a resistance increase of 20%. Dynamic finite element models are employed to generate strain transfer functions, which relate board strain levels observed in-test to respective solder strain levels. The transfer functions are based on locally averaged values of strains in critical regions of the solder and in appropriate regions of the PWB. The vibration test data and the solder strains from FEA are used to estimate lower-bound material fatigue curves for SAC305 solder materials, as a function of isothermal pre-aging.
Resumo:
This work reports the influence of the poly (ethylene terephthalate) textile surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min. Other parameters, such as working gas composition and treatment time, were modified as the following: to the O2 plasma modified samples only the treatment time was changed (10, 20, 30, 40, 50 and 60 minutes). To the plasma with O2 and N2 only the chemical concentrations were changed. Through Capillary tests (vertical) an increase in textile wettability was observed as well as its influence on aging time and its consequence on wettability. The surface functional groups created after plasma treatments were investigated using X-ray Photoelectron Spectroscopy (XPS). The surface topography was examined by scanning electron microscope (SEM)
Resumo:
Amniotic fluid stem cells (hAFSC) are emerging as a potential therapeutic approach for various disorders. The low number of available hAFSC requires their ex vivo expansion prior to clinical use, however, during their in vitro culture, hAFSC quickly reach replicative senescence. The principal aim of this study was to investigate the aging process occurring during in vitro expansion of hAFSC, focusing on the redox control that has been reported to be affected in premature and physiological aging. My results show that a strong heterogeneity is present among samples that reflects their different behaviour in culture. I identified three proteins, namely Nox4, prelamin A and PML, which expression increases during hAFSC aging process and could be used as new biomarkers to screen the samples. Furthermore, I found that Nox4 degradation is regulated by sumoylation via proteasome and involves interactions with PML bodies and prelamin A. Since various studies revealed that donor-dependent differences could be explained by cell-to-cell variation within each patient, I studied in deep this phenomenon. I showed that the heterogeneity among samples is also accompanied by a strong intra-population heterogeneity. Separation of hAFSC subpopulations from the same donor, using Celector® technology, showed that an enrichment in the last eluted fraction could improve hAFSC application in regenerative medicine. One of the other problems is that nowadays hAFSC are expanded under atmospheric O2 concentration, which is higher than the O2 tension in their natural niches. This higher O2 concentration might cause environmental stress to the in vitro cultured hAFSCs and accelerate their aging process. Here, I showed that prolonged low oxygen tension exposure preserves different hAFSC stemness properties. In conclusion, my study pointed different approaches to improve in vitro hAFSC expansion and manipulation with the purpose to land at stem cell therapy.