982 resultados para Natural Frequency Optimization
Resumo:
The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.
Resumo:
A sandwich construction is a special form of the laminated composite consisting of light weight core, sandwiched between two stiff thin face sheets. Due to high stiffness to weight ratio, sandwich construction is widely adopted in aerospace industries. As a process dependent bonded structure, the most severe defects associated with sandwich construction are debond (skin core bond failure) and dent (locally deformed skin associated with core crushing). Reasons for debond may be attributed to initial manufacturing flaws or in service loads and dent can be caused by tool drops or impacts by foreign objects. This paper presents an evaluation on the performance of honeycomb sandwich cantilever beam with the presence of debond or dent, using layered finite element models. Dent is idealized by accounting core crushing in the core thickness along with the eccentricity of the skin. Debond is idealized using multilaminate modeling at debond location with contact element between the laminates. Vibration and buckling behavior of metallic honeycomb sandwich beam with and without damage are carried out. Buckling load factor, natural frequency, mode shape and modal strain energy are evaluated using finite element package ANSYS 13.0. Study shows that debond affect the performance of the structure more severely than dent. Reduction in the fundamental frequencies due to the presence of dent or debond is not significant for the case considered. But the debond reduces the buckling load factor significantly. Dent of size 8-20% of core thickness shows 13% reduction in buckling load capacity of the sandwich column. But debond of the same size reduced the buckling load capacity by about 90%. This underscores the importance of detecting these damages in the initiation level itself to avoid catastrophic failures. Influence of the damages on fundamental frequencies, mode shape and modal strain energy are examined. Effectiveness of these parameters as a damage detection tool for sandwich structure is also assessed
Resumo:
This paper considers a connection between the deterministic and noisy behavior of nonlinear networks. Specifically, a particular bridge circuit is examined which has two possibly nonlinear energy storage elements. By proper choice of the constitutive relations for the network elements, the deterministic terminal behavior reduces to that of a single linear resistor. This reduction of the deterministic terminal behavior, in which a natural frequency of a linear circuit does not appear in the driving-point impedance, has been shown in classical circuit theory books (e.g. [1, 2]). The paper shows that, in addition to the reduction of the deterministic behavior, the thermal noise at the terminals of the network, arising from the usual Nyquist-Johnson noise model associated with each resistor in the network, is also exactly that of a single linear resistor. While this result for the linear time-invariant (LTI) case is a direct consequence of a well-known result for RLC circuits, the nonlinear result is novel. We show that the terminal noise current is precisely that predicted by the Nyquist-Johnson model for R if the driving voltage is zero or constant, but not if the driving voltage is time-dependent or the inductor and capacitor are time-varying
Resumo:
O objetivo do presente trabalho é o estudo do comportamento, em termos de freqüências naturais de estruturas de torres estaiadas, para diversas situações de serviço. Para isso criou-se uma formulação para a determinação dessas freqüências, utilizando o método da matriz de transferência. O procedimento consiste na discretização da estrutura em elementos de barras, massas discretas, molas e amortecedores viscosos, para a representação da estrutura. Com relação aos cabos da torre estaiada, desenvolveu-se uma expressão que nos fornece a rigidez completa dos mesmos, apoiados nos extremos, com amortecimento viscoso e as propriedades físicas e geométricas uniformes. Além disso, os cabos podem ser inclinados e sujeitos à excitação horizontal harmônica no apoio superior. Nesse caso, considera-se uma deformada parabólica do cabo na posição de equilíbrio estático, e por outro lado, os deslocamentos dinâmicos são considerados pequenos. A rigidez do cabo é válida para um ângulo de inclinação que varia de zero (0) a noventa (90) graus. Esse método é aplicável a microcomputadores devido a pouca memória empregada no processamento de dados. Com esse intuito, foi elaborado um programa para microcomputadores de 16 bits, que possibilita o estudo da estrutura da torre sobre o efeito de flexão pura, torção pura ou acoplamento de ambos. Exemplos numéricos de torres estaiadas e do comportamento da rigidez de cabos foram desenvolvidos para as mais diversas situações de cálculo.
Resumo:
Fundamentalmente, o presente trabalho faz uma análise elástica linear de pontes ou vigas curvas assimétricas de seção transversal aberta e de parede fina, com propriedades físicas, geométricas e raio de curvatura constantes ao longo do eixo baricêntrico. Para tanto, utilizaram-se as equações diferenciais de VLASOV considerando o acoplamento entre as deformações nas direções vertical, transversal, axial de torcão nal. Na solução do sistema de quatro equações com derivadas parciais foi utilizado um apropriado método numérico de integração (Diferenças Finitas Centrais). A análise divide-se, basicamente, em dois tipos: análise DINÂMICA e ESTATICA. Ambas são utilizadas também na determinação do coeficiente de impacto (C.M.D.). A primeira refere-se tanto na determinação das características dinâmicas básicas (frequências naturais e respectivos modos de vibração), como também na determinação da resposta dinâmica da viga, em tensões e deformações, para cargas móveis arbitrárias. Vigas com qualquer combinação das condições de contorno, incluindo bordos rotulados e engastados nas três direções de flexão e na torção, são consideradas. 0s resultados da análise teórica, obtidos pela aplicação de programas computacionais implementados em microcomputador (análise estática) e no computador B-6700 (análise dinâmica), são comparados tanto com os da bibliografia técnica como também com resultados experimentais, apresentando boa correlação.
Resumo:
This paper investigates the feasibility of using an energy harvesting device tuned such that its natural frequency coincides with higher harmonics of the input to capture energy from walking or running human motion more efficiently. The paper starts by reviewing the concept of a linear resonant generator for a tonal frequency input and then derives an expression for the power harvested for an input with several harmonics. The amount of power harvested is estimated numerically using measured data from human subjects. Assuming that the input is periodic, the signal is reconstructed using a Fourier series before being used in the simulation. It is found that although the power output depends on the input frequency, the choice of tuning the natural frequency of the device to coincide with a particular higher harmonic is restricted by the amount of damping that is needed to maximize the amount of power harvested, as well as to comply with the size limit of the device. It is also found that it is not feasible to tune the device to match the first few harmonics when the size of the device is small, because a large amount of damping is required to limit the motion of the mass.
Resumo:
This paper presents a simple but practical feedback control method to suppress the vibration of a flexible structure in the frequency range between 10 Hz and 1 kHz. A dynamic vibration absorber is designed for this, which has a natural frequency of 100 Hz and a normalized bandwidth (twice the damping ratio) of 9.9. The absorber is realized electrically by feeding back the structural acceleration at one position on the host structure to a collocated piezoceramic patch actuator via an analog controller consisting of a second-order lowpass filter. This absorber is equivalent to a single degree-of-freedom mechanical oscillator consisting of a serially connected mass-spring-damper system. A first-order lowpass filter is additionally used to improve stability at very high frequencies. Experiments were conducted on a free-free beam embedded with a piezoceramic patch actuator and an accelerometer at its center. It is demonstrated that the single absorber can simultaneously suppress multiple vibration modes within the control bandwidth. It is further shown that the control system is robust to slight changes in the plant. The method described can be applied to many other practical structures, after retuning the absorber parameters for the structure under control.
Resumo:
Engineers often face the challenge of reducing the level of vibrations experienced by a given payload or those transmitted to the support structure to which a vibrating source is attached. In order to increase the range over which vibrations are isolated, soft mounts are often used in practice. The drawback of this approach is the static displacement may be too large for reasons of available space for example. Ideally, a vibration isolator should have a high-static stiffness, to withstand static loads without too large a displacement, and at the same time, a low dynamic stiffness so that the natural frequency of the system is as low as possible which will result in an increased isolation region. These two effects are mutually exclusive in linear isolators but can be overcome if properly configured nonlinear isolators are used. This paper is concerned with the characterisation of such a nonlinear isolator comprising three springs, two of which are configured to reduce the dynamic stiffness of the isolator. The dynamic behaviour of the isolator supporting a lumped mass is investigated using force and displacement transmissibility, which are derived by modelling the dynamic system as a single-degree-of-freedom system. This results in the system dynamics being approximately described by the Duffing equation. For a linear isolator, the dynamics of the system are the same regardless if the source of the excitation is a harmonic force acting on the payload (force transmissibility) or a harmonic motion of the base (displacement transmissibility) on which the payload is mounted. In this paper these two expressions are compared for the nonlinear isolator and it is shown that they differ. A particular feature of the displacement transmissibility is that the response is unbounded at the nonlinear resonance frequency unless the damping in the isolator is greater than some threshold value, which is not the case for force transmissibility. An explanation for this is offered in the paper. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we examine the nonlinear control method based on the saturation phenomenon and of systems coupled with quadratic nonlinear ties applied to a shear-building portal plane frame foundation that supports an unbalanced direct cut-rent with limited power supply (non-ideal system). We analyze the equations of motion by using the method of averaging and numerical simulation. The interaction of the non-ideal structure with the saturation controller may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. Special attention is focused on passage through resonance when the non-ideal excitation frequency is near the portal frame natural frequency and when the non-ideal system frequency is approximately twice the controller frequency (two-to-one internal resonance).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
On non-ideal simple portal frame structural model: Experimental results under a non-ideal excitation
Resumo:
We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.
Resumo:
In this paper, a methodology for the study of a fuel cell cogeneration system and applied to a university campus is developed. The cogeneration system consists of a molten carbonate fuel cell associated to an absorption refrigeration system. The electrical and cold-water demands of the campus are about 1,000 kW and 1,840 kW (at 7°C), respectively. The energy, exergy and economic analyses are presented. This system uses natural gas as the fuel and operates on electric parity. In conclusion, the fuel cell cogeneration system may have an excellent opportunity to strengthen the decentralized energy production in the Brazilian tertiary sector.
Resumo:
In this paper a hybrid solid oxide fuel cell (SOFC) system is analyzed. This system applies a combined cycle utilizing gas turbine associated to a SOFC for rational decentralized energy production. Initially the relative concepts about the fuel cell are presented, followed by some chemical and technical informations such as the change of Gibbs free energy in isothermal fuel oxidation (or combustion) directly into electricity. This represents a very high fraction of the lower heating value (LHV) of a hydrocarbon fuel. In the next step a methodology for the study of SOFC associated with a gas turbine system is developed, considering the electricity and steam production for a hospital, as regard to the Brazilian conditions. This methodology is applied to energetic analysis. Natural gas is considered as a fuel. In conclusion, it is shown by a Sankey Diagram that the hybrid SOFC system may be an excellent opportunity to strengthen the decentralized energy production in Brazil. It is necessary to consider that the cogeneration in this version also is a sensible alternative from the technical point of view, demanding special methods of design, equipment selection and mainly of the contractual deals associated to electricity and fuel supply.
Resumo:
Successful experiments in nonlinear vibrations have been carried out with cantilever beams under harmonic base excitation. A flexible slender cantilever has been chosen as a convenient structure to exhibit modal interactions, subharmonic, superharmonic and chaotic motions, and others interesting nonlinear phenomena. The tools employed to analyze the dynamics of the beam generally include frequency- and force-response curves. To produce force-response curves, one keeps the excitation frequency constant and slowly varies the excitation amplitude, on the other hand, to produce frequency-response curves, one keeps the excitation amplitude fixed and slowly varies the excitation frequency. However, keeping the excitation amplitude constant while varying the excitation frequency is a difficult task with an open-loop measurement system. In this paper, it is proposed a closed-loop monitor vibration system available with the electromagnetic shaker in order to keep the harmonic base excitation amplitude constant. This experimental setup constitutes a significant improvement to produce frequency-response curves and the advantages of this setup are evaluated in a case study. The beam is excited with a periodic base motion transverse to the axis of the beam near the third natural frequency. Modal interactions and two-period quasi-periodic motion are observed involving the first and the third modes. Frequency-response curves, phase space and Poincaré map are used to characterize the dynamics of the beam.
Resumo:
Three methods are used to determine the natural frequency of undamped free vibration of a mass interacting with a Hertzian contact stiffness. The exact value is determined using the first integral of motion. The harmonic balance method is used on a transformed equation for an approximate solution, and the multiple scales method is used on an approximate equation. The maximum initial displacement avoiding contact loss is also determined, and the corresponding exact natural frequency is also obtained analytically. The methods are evaluated by studying the free vibration of an elastic sphere on a flat rigid surface. © 2011 Elsevier Ltd © 2011 Elsevier Ltd. All rights reserved.