946 resultados para Nanometric CeO


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rare-earth metals were hydrogenated in the presence of TiCl4 catalyst in tetrahydrofuran (THF) at 45 degreesC under normal pressure. Transmission electron micrographs showed that the re. sulting lanthanide hydrides were in the form of nanoparticles. The rate of hydrogenation decreased with increasing atomic number of the rare-earth elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly reactive magnesium powder of nanometric size, which was generated by the thermal decomposition of magnesium anthracene . 3THF under vacuum, can react with N-2 under atmospheric pressure, even at 300 degrees C, to form magnesium nitride. The rate and extent of the reaction can be improved effectively by doping the magnesium powder with a small amount of nickel or titanium compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium nitride (Mg3N2) was synthesized by the reaction of magnesium in the highly reactive form (Mg*) with nitrogen at 450 degrees C under normal pressure. The effect of doping with nickel dichloride on the nitridation of Mg* was investigated. Differential thermal analysis (DTA) of Mg* systems and transmission electron microscopy (TEM) measurement of the product formed were carried out. TEM measurement showed that the particle size of the Mg3N2 synthesized was in the nanometric range. The dependence of nitridation of the NiCl2-doped Mg* on temperature was investigated at temperatures ranging from 300 to 500 degrees C. The nitridation of NiCl2-doped Mg* could occur even at temperature as low as 300 degrees C. (C) 1999 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Thesis is an exploration of potential enhancement in effectiveness, personally, professionally and organisationally through the use of Theory as an Apparatus of Thought. Enhanced effectiveness was sought by the practitioner (Subject), while in transition to becoming Chief Executive of his organization. The introduction outlines the content and the structure of the University College Cork DBA. Essay One outlines what Theory is, what Adult Mental Development is and an exploration of Theories held in the Authors past professional practice. Immunity to change is also reflected on. Essay Two looks at the construct of the key Theories used in the Thesis. Prof. Robert Kegan’s Theory of Adult Mental Development was used to aid the generation of insight. The other key Theories used were The Theory of The Business, Theory of the Co‐operative and a Theory of Organisational Leadership. Essay Three explores the application of the key Theories in a professional setting. The findings of the Thesis were that the subject was capable of dealing with increased environmental complexity and uncertainty by using Theory as an Apparatus of Thought, which in turn enhanced personal, professional and organisational effectiveness. This was achieved by becoming more aware of the Theories held by the practitioner, the experiences from the application of those Theories, which then led to greater insight. The author also found that a detailed understanding of the Theory of the Business and a Theory of Leadership would support any new CEO in the challenging early part of their tenure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A broad survey of harmonic dynamics in AB(2) clusters with up to N = 3000 atoms is performed using a simple rigid ion model, with ionic radii selected to give rutile as the ground state structure for the corresponding extended crystal. The vibrational density of states is already close to its bulk counterpart for N similar to 500, with characteristic differences due to surfaces, edges and vertices. Two methods are proposed and tested to map the cluster vibrational states onto the rutile crystal phonons. The net distinction between infrared (IR) active and Raman active modes that exists for bulk rutile becomes more and more blurred as the cluster size is reduced. It is found that, in general, the higher the IR activity of the mode, the more this is affected by the system size. IR active modes are found to spread over a wide frequency range for the finite clusters. Simple models based on either a crude confinement constraint or surface pressure arguments fail to reproduce the results of the calculations. The effects of the stoichiometry and dielectric properties of the surrounding medium on the vibrational properties of the clusters are also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ground state energy, structure, and harmonic vibrational modes of 1-butyl-3-methylimidazolium triflate ([bmim][Tf]) clusters have been computed using an all-atom empirical potential model. Neutral and charged species have been considered up to a size (30 [bmim][Tf] pairs) well into the nanometric range. Free energy computations and thermodynamic modeling have been used to predict the equilibrium composition of the vapor phase as a function of temperature and density. The results point to a nonnegligible concentration of very small charged species at pressures (P ~ 0.01 Pa) and temperatures (T 600 K) at the boundary of the stability range of [bmim][Tf]. Thermal properties of nanometric neutral droplets have been investigated in the 0 T 700 K range. A near-continuous transition between a liquidlike phase at high T and a solidlike phase at low T takes place at T ~ 190 K in close correspondence with the bulk glass point Tg ~ 200 K. Solidification is accompanied by a transition in the dielectric properties of the droplet, giving rise to a small permanent dipole embedded into the solid cluster. The simulation results highlight the molecular precursors of several macroscopic properties and phenomena and point to the close competition of Coulomb and dispersion forces as their common origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3C–SiC (the only polytype of SiC that resides in a diamond cubic lattice structure) is a relatively new material that exhibits most of the desirable engineering properties required for advanced electronic applications. The anisotropy exhibited by 3C–SiC during its nanometric cutting is significant, and the potential for its exploitation has yet to be fully investigated. This paper aims to understand the influence of crystal anisotropy of 3C–SiC on its cutting behaviour. A molecular dynamics simulation model was developed to simulate the nanometric cutting of single-crystal 3C–SiC in nine (9) distinct combinations of crystal orientations and cutting directions, i.e. (1?1?1) <-1?1?0>, (1?1?1) <-2?1?1>, (1?1?0) <-1?1?0>, (1?1?0) <0?0?1>, (1?1?0) <1?1?-2>, (0?0?1) <-1?1?0>, (0?0?1) <1?0?0>, (1?1?-2) <1?-1?0> and (1?-2?0) <2?1?0>.

In order to ensure the reliability of the simulation results, two separate simulation trials were carried out with different machining parameters. In the first trial, a cutting tool rake angle of -25°, d/r (uncut chip thickness/cutting edge radius) ratio of 0.57 and cutting velocity of 10 m s-1 were used whereas a second trial was done using a cutting tool rake angle of -30°, d/r ratio of 1 and cutting velocity of 4 m s-1. Both the trials showed similar anisotropic variation.

The simulated orthogonal components of thrust force in 3C–SiC showed a variation of up to 45%, while the resultant cutting forces showed a variation of 37%. This suggests that 3C–SiC is highly anisotropic in its ease of deformation. These results corroborate with the experimentally observed anisotropic variation of 43.6% in Young's modulus of 3C–SiC. The recently developed dislocation extraction algorithm (DXA) [1, 2] was employed to detect the nucleation of dislocations in the MD simulations of varying cutting orientations and cutting directions. Based on the overall analysis, it was found that 3C–SiC offers ease of deformation on either (1?1?1) <-1?1?0>, (1?1?0) <0?0?1>, or (1?0?0) <1?0?0> setups.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shear instability of the nanoscrystalline 3C-SiC during nanometric cutting at a cutting speed of 100?m/s has been investigated using molecular dynamics simulation. The deviatoric stress in the cutting zone was found to cause sp3-sp2 disorder resulting in the local formation of SiC-graphene and Herzfeld-Mott transitions of 3C-SiC at much lower transition pressures than that required under pure compression. Besides explaining the ductility of SiC at 1500?K, this is a promising phenomenon in general nanoscale engineering of SiC. It shows that modifying the tetrahedral bonding of 3C-SiC, which would otherwise require sophisticated pressure cells, can be achieved more easily by introducing non-hydrostatic stress conditions.