950 resultados para Nano particles
Resumo:
A novel method of grafting ring-opening polymerization of L-lactide (LLA) onto the surface of hydroxyapatite nano-particles (n-HAP) was developed. PLLA was directly connected onto the HAP surface through a chemical linkage. The PLLA-g-HAP particles could be stably dispersed in organic solvent such as chloroform for several weeks. The n-HAP particles still retained the original dimension and shape after the grafting of PLLA. Compared with the P-31 MAS-NMR spectrum of pure HAP powders, there appeared a downfield displacement of 1.2 ppm in the spectrum of PLLA-g-HAP. Fourier transformation infrared (FT-IR) spectra further confirmed the existence of PLLA on the surface of PLLA-g-HAP. The amount of grafted polymer determined by thermal gravimetric analysis (TGA) was about 6% in weight. The tensile strength and elongation at break of the PLLA/PLLA-g-HAP composite containing 8 wt% of PLLA-g-HAP were 55 MPa and about 10-13%, respectively, while those of the PLLA/n-HAP composites were 40 MPa and 3-5%, respectively.
Resumo:
Fully sulfonated polyaniline nano-particles, nano-fibrils and nano-networks have been achieved for the first time by electrochemical homopolymerization of orthanilic acid using a three-step electrochemical deposition procedure in a mixed solvent of acetonitrile (ACN) and water. The diameter of the uniform nano-particles is about 60nm, and the nano-fibrils can be organized in two-dimensional (21)) or three-dimensional (313) non-periodic networks with good electrical contact. Average distance between contacts is about 850 and 600 nm for a 2D and 3D system, respectively. The details of the poly(orthanilic acid) (POA) nano-structure were examined with a field emission scanning electron microscope (SEM). The structure and properties of POA were characterized with FTIR, UV-vis and electrochemical methods. The 3D POA nano-networks coated platinum electrode gave a direct electrochemical behavior of horse heart cytochrome c (Cyt c) immobilized on this electrode surface, a pair of well-defined redox waves with formal potential (E-ol) of -0.032 V (versus Ag/AgCl) was achieved. The interaction between Cyt c and POA makes the formal potential shift negatively compared to that of Cyt c in solution. Spectrophotometric and electrochemical methods were used to investigate the interaction of Cyt c with POA.
Resumo:
R Winter, D Le Messurier, CM Martin; Cryst Rev 12 (2006) 3 Sponsorship: EPSRC, CCLRC, Pilkington
Resumo:
Cerium dioxide (ceria) nanoparticles have been the subject of intense academic and industrial interest. Ceria has a host of applications but academic interest largely stems from their use in the modern automotive catalyst but it is also of interest because of many other application areas notably as the abrasive in chemical-mechanical planarisation of silicon substrates. Recently, ceria has been the focus of research investigating health effects of nanoparticles. Importantly, the role of non-stoichiometry in ceria nanoparticles is implicated in their biochemistry. Ceria has well understood non-stoichiometry based around the ease of formation of anion vacancies and these can form ordered superstructures based around the fluorite lattice structure exhibited by ceria. The anion vacancies are associated with localised or small polaron states formed by the electrons that remain after oxygen desorption. In simple terms these electrons combine with Ce4+ states to form Ce3+ states whose larger ionic radii is associated with a lattice expansion compared to stoichiometric CeO2. This is a very simplistic explanation and greater defect chemistry complexity is suggested by more recent work. Various authors have shown that vacancies are mobile and may result in vacancy clustering. Ceria nanoparticles are of particular interest because of the high activity and surface area of small particulates. The sensitivity of the cerium electronic band structure to environment would suggest that changes in the properties of ceria particles at nanoscale dimensions might be expected. Notably many authors report a lattice expansion with reducing particle size (largely confined to sub-10 nm particles). Most authors assign increased lattice dimensions to the presence of a surface stable Ce2O3 type layer at low nanoparticle dimensions. However, our understanding of oxide nanoparticles is limited and their full and quantitative characterisation offers serious challenges. In a series of chemical preparations by ourselves we see little evidence of a consistent model emerging to explain lattice parameter changes with nanoparticle size. Based on these results and a review of the literature it is worthwhile asking if a model of surface enhanced defect concentration is consistent with known cerium/cerium oxide chemistries, whether this is applicable to a range of different synthesis methods and if a more consistent description is possible. In Chapter one the science of cerium oxide is outlined including the crystal structure, defect chemistry and different oxidation states available. The uses and applications of cerium oxide are also discussed as well as modelling of the lattice parameter and the doping of the ceria lattice. Chapter two describes both the synthesis techniques and the analytical methods employed to execute this research. Chapter three focuses on high surface area ceria nano-particles and how these have been prepared using a citrate sol-gel precipitation method. Changes to the particle size have been made by calcining the ceria powders at different temperatures. X-ray diffraction methods were used to determine their lattice parameters. The particles sizes were also assessed using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and BET, and, the lattice parameter was found to decrease with decreasing particle size. The results are discussed in light of the role played by surface tension effects. Chapter four describes the morphological and structural characterization of crystalline CeO2 nanoparticles prepared by forward and reverse precipitation techniques and compares these by powder x-ray diffraction (PXRD), nitrogen adsorption (BET) and high resolution transmission electron microscopy (HRTEM) analysis. The two routes give quite different materials although in both cases the products are essentially highly crystalline, dense particulates. It was found that the reverse precipitation technique gave the smallest crystallites with the narrowest size dispersion. This route also gave as-synthesised materials with higher surface areas. HRTEM confirmed the observations made from PXRD data and showed that the two methods resulted in quite different morphologies and surface chemistries. The forward route gives products with significantly greater densities of Ce3+ species compared to the reverse route. Data are explained using known precipitation chemistry and kinetic effects. Chapter five centres on the addition of terbia to ceria and has been investigated using XRD, XRF, XPS and TEM. Good solid solutions were formed across the entire composition range and there was no evidence for the formation of mixed phases or surface segregation over either the composition or temperature range investigated. Both Tb3+ and Tb4+ ions exist within the solution and the ratios of these cations are consistent with the addition of Tb8O15 to the fluorite ceria structure across a wide range of compositions. Local regions of anion vacancy ordering may be visible for small crystallites. There is no evidence of significant Ce3+ ion concentrations formed at the surface or in the bulk by the addition of terbia. The lattice parameter of these materials was seen to decrease with decreasing crystallite size. This is consistent with increased surface tension effects at small dimension. Chapter six reviews size related lattice parameter changes and surface defects in ceria nanocrystals. Ceria (CeO2) has many important applications, notably in catalysis. Many of its uses rely on generating nanodimensioned particles. Ceria has important redox chemistry where Ce4+ cations can be reversibly reduced to Ce3+ cations and associated anion vacancies. The significantly larger size of Ce3+ (compared with Ce4+) has been shown to result in lattice expansion. Many authors have observed lattice expansion in nanodimensioned crystals (nanocrystals), and these have been attributed to the presence of stabilized Ce3+ -anion vacancy combinations in these systems. Experimental results presented here show (i) that significant, but complex changes in the lattice parameter with size can occur in 2-500 nm crystallites, (ii) that there is a definitive relationship between defect chemistry and the lattice parameter in ceria nanocrystals, and (iii) that the stabilizing mechanism for the Ce3+ -anion vacancy defects at the surface of ceria nanocrystals is determined by the size, the surface status, and the analysis conditions. In this work, both lattice expansion and a more unusual lattice contraction in ultrafine nanocrystals are observed. The lattice deformations seen can be defined as a function of both the anion vacancy (hydroxyl) concentration in the nanocrystal and the intensity of the additional pressure imposed by the surface tension on the crystal. The expansion of lattice parameters in ceria nanocrystals is attributed to a number of factors, most notably, the presence of any hydroxyl moieties in the materials. Thus, a very careful understanding of the synthesis combined with characterization is required to understand the surface chemistry of ceria nanocrystals.
Resumo:
The work presented in this thesis described the development of low-cost sensing and separation devices with electrochemical detections for health applications. This research employs macro, micro and nano technology. The first sensing device developed was a tonerbased micro-device. The initial development of microfluidic devices was based on glass or quartz devices that are often expensive to fabricate; however, the introduction of new types of materials, such as plastics, offered a new way for fast prototyping and the development of disposable devices. One such microfluidic device is based on the lamination of laser-printed polyester films using a computer, printer and laminator. The resulting toner-based microchips demonstrated a potential viability for chemical assays, coupled with several detection methods, particularly Chip-Electrophoresis-Chemiluminescence (CE-CL) detection which has never been reported in the literature. Following on from the toner-based microchip, a three-electrode micro-configuration was developed on acetate substrate. This is the first time that a micro-electrode configuration made from gold; silver and platinum have been fabricated onto acetate by means of patterning and deposition techniques using the central fabrication facilities in Tyndall National Institute. These electrodes have been designed to facilitate the integration of a 3- electrode configuration as part of the fabrication process. Since the electrodes are on acetate the dicing step can automatically be eliminated. The stability of these sensors has been investigated using electrochemical techniques with excellent outcomes. Following on from the generalised testing of the electrodes these sensors were then coupled with capillary electrophoresis. The final sensing devices were on a macro scale and involved the modifications of screenprinted electrodes. Screen-printed electrodes (SPE) are generally seen to be far less sensitive than the more expensive electrodes including the gold, boron-doped diamond and glassy carbon electrodes. To enhance the sensitivity of these electrodes they were treated with metal nano-particles, gold and palladium. Following on from this, another modification was introduced. The carbonaceous material carbon monolith was drop-cast onto the SPE and then the metal nano-particles were electrodeposited onto the monolith material
Resumo:
Este estudo transversal está focado na propriedade de luminescência persistente do aluminato de estrôncio co-dopado com cério (III), disprósio (III) e európio (II), SrAl2O4:Ce3+, Dy3+, Eu2+, em sistemas de sinalização de áreas de risco e emergências para pessoas com deficiências. Na área da ciência e engenharia dos materiais, foram desenvolvidos novos materiais com características nanométricas, nanotubos, nanoarames e nanobastões luminescentes de SrAl2O4:Ce3+, Dy3+, Eu2+ para aplicações na área da reabilitação e acessibilidade de pessoas com deficiências. Os nanotubos foram obtidos a partir de micro- e nano-partículas precursoras sintetizadas por reacção do estado-sólido e tratamento térmico de recozedura (1273-1473 K). Os nanoarames e nanobastões foram preparados por moagem, sonificação e recozedura (373 K). Novas nanocápsulas de aluminatos luminescentes dopados com cério (III) e encapsulados com TiO2 foram criadas de modo a obter-se materiais multifuncionais, designadamente com acção fotocatalítica antimicrobiana, antibacteriana e resistência à água. Tais aluminatos podem ser amplamente aplicados como superfícies higiénicas, auto-limpantes, em biomateriais, no domínio de medicamentos antibióticos, na formulação de vacinas, e com ênfase à aplicação em cerâmicas fotoluminescentes. As metodologias de obtenção de tais nanoestruturas de aluminato de estrôncio dopado com cério (III) e do seu encapsulamento, desenvolvidas no âmbito desta tese, são aplicáveis a diversos aluminatos dopados com outros iões lantanídeos (Ln consiste em La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, Tm ou Lu) com a fórmula M(1-x-y)N2O4:Cex, Lny, onde M é Be, Mg, Ca, Sr ou Ba. Na área da oftalmologia, foi desenvolvido um equipamento médico para o diagnóstico de biofuncionalidade das células retinais fotoreceptoras, e como suporte à telemedicina oftalmológica. Este equipamento foi utilizado para realizar testes de visão cromática FM100HUE em fundo branco/preto para a personalização de materiais luminescentes. Os resultados demonstraram uma biofuncionalidade celular à visibilidade fotópica das cores em fundo preto superior no grupo de tratamento, composto por pessoas com retinopatia diabética (n=38), em comparação ao grupo de referência (n=38). Estes resultados sugerem a recomendação de materiais com fotoluminescência persistente (λem=485-555 nm), incluindo SrAl2O4:Ce3+, Dy3+, Eu2+, para o referido grupo de tratamento, em sinalização de emergência e em ambientes de baixa iluminação. Na área da arquitectura, foi proposta uma nova aplicação dos referidos nanomateriais luminescentes à base de SrAl2O4:Ce3+, Dy3+, Eu2+ em cerâmica de revestimento, tendo em vista a sua boa visibilidade e uso por pessoas com deficiências. Novos pavimentos, cerâmicos, fotoluminescentes, foram desenhados com propriedades multisensoriais (contraste táctil, sonoro e visual) e antimicrobianas, para pessoas portadoras de deficiências utilizarem, no escuro, com a prioridade de salvar vidas em emergências. Tais pisos, com relevos, podem ser combinados de modo a compor um sistema exclusivo de sinalização fotoluminescente multisensorial que possibilita a rápida evacuação mediante o uso de auxílios de mobilidade (e.g. bengala, cadeira de rodas, andadores, muletas). A solução integrada de tais inovações que potencializa a propriedade de luminescência persistente de SrAl2O4:Ce3+, Dy3+, Eu2+ de modo acessível para as pessoas com deficiências, pode contribuir para salvar vidas, no escuro, em emergências.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abstract Inhalation of ambient air particles or engineered nanoparticles (NP) handled as powders, dispersions or sprays in industrial processes and contained in consumer products pose a potential and largely unknown risk for incidental exposure. For efficient, economical and ethically sound evaluation of health hazards by inhaled nanomaterials, animal-free and realistic in vitro test systems are desirable. The new Nano Aerosol Chamber for in-vitro Toxicity studies (NACIVT) has been developed and fully characterized regarding its performance. NACIVT features a computer-controlled temperature and humidity conditioning, preventing cellular stress during exposure and allowing long-term exposures. Airborne NP are deposited out of a continuous air stream simultaneously on up to 24 cell cultures on Transwell® inserts, allowing high-throughput screening. In NACIVT, polystyrene as well as silver particles were deposited uniformly and efficiently on all 24 Transwell® inserts. Particle-cell interaction studies confirmed that deposited particles reach the cell surface and can be taken up by cells. As demonstrated in control experiments, there was no evidence for any adverse effects on human bronchial epithelial cells (BEAS-2B) due to the exposure treatment in NACIVT. The new, fully integrated and transportable deposition chamber NACIVT provides a promising tool for reliable, acute and sub-acute dose-response studies of (nano)particles in air-exposed tissues cultured at the air-liquid interface.
Resumo:
El objetivo de este trabajo es determinar la influencia de la incorporación de nanoSiO2, nanoAl2O3 así como la mezcla de ambas adiciones, en morteros de cemento cuando son sometidos a ciclos de hielo-deshielo, e interpretar dicho comportamiento a través de los cambios microestructurales. Para ello se fabricaron cuatro morteros de cemento con distintas adiciones. Un mortero de cemento CEM I 52,5R normalizado de acuerdo a la Norma Europea EN 196-1:2005 como control. Otro de igual composición, al que se incorporó un 5% de nano-SiO2 respecto a la cantidad total de cemento, un tercero con un 5% de nano-Al2O3 y un cuarto con un 2,5% de nano-SiO2 y un 2,5% de nano-Al2O3. La relación agua/material cementante de 0,47. Para cada mortero, se fabricaron 4 probetas de 15x15x15 cm con el fin de determinar su resistencia a ciclos de hielodeshielo de acuerdo a la UNE-CEN/TS 12390-9 EX. Además, se caracterizaron microestructuralmente mediante porosimetría por intrusión de mercurio, análisis termogravimétrico y micrografía electrónica. Los resultados de la caracterización microestructural ponen de manifiesto un refinamiento de la matriz porosa, con aumento de la cantidad de geles hidratados. Las imágenes de SEM revelan cambios en la morfología de los productos hidratados de la matriz cementicia, siendo notables tanto en la portlandita como en la ettringita. Los cambios producidos por la adición de nano sílice muestran una gran influencia en la estructura porosa y determinan una mejora muy significativa en el comportamiento de estos morteros bajo ciclos hielo-deshielo. The rise of nanotechnology in the last two decades has been of scientific interest considerable for the construction industry due to the high potential in the use of nano-particles in cementitious materials. These allow a reengineering of existing products and the design of new high-performance materials. In this line there are many works in which we study the effect of additions of nano-particles in mortars and concretes. However, were very few scientific papers in which we study the behavior of these materials under freeze-thaw cycles. The aim of this study was to determine the influence of incorporating nano-SiO2, nano-Al2O3 and the mixture of both additions in cement mortar when subjected to freeze-thaw cycles, and interpret such behavior through microstructural changes.For this purpose four cement mortars have been fabricated with different additions. A cement mortar CEM I 52,5 R normalized according to the European standard EN 196-1:2005 was manufactured as control . Another mortar with a 5% nano-SiO2 in respect to the total amount of cement, other with 5% nano-Al2O3 and for last a mortar with 2.5% of nano-SiO2 and 2.5% of nano-Al2O3. The water/binder ratio was 0.47. For each mortar, four specimens were made of 150x150x150 mm in order to determine its behavior under freeze-thaw cycles according to UNE-CEN/TS EX 12390-9. Furthermore, the mortars were characterized microstructurally by mercury intrusion porosimetry, thermogravimetric analysis and electron micrograph. The microstructural characterization results show a refinement of the porous matrix, with increased amount of hydrated gels. The SEM images show changes in the morphology of the products of the hydrated cement matrix being remarkable both in the portlandite as in the ettringite. The changes produced by the addition of nanosilica show a great influence on the porous structure and determine a significant improvement in the behavior of these mortars under freeze-thaw cycles.
Effect of nano-Si2O and nano-Al2O3 on cement mortars for use in agriculture and livestock production
Resumo:
The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. Mortars were tested at 7, 28 and 90 d of curing to determine compression strength, total porosity and pore distribution by mercury intrusion porosimetry (MIP) and the relationship between the CSH gel and Portlandite total by thermal gravimetric analysis (TGA). The capillary suction coefficient and an analysis by a scanning electron microscope (SEM) was made. There was a large increase in Vickers surface hardness for 5% n-Si mortar and a slight increase in resistance to abrasion. No significant difference was found between the mortars with nano-particles, whose LA was about 10.8, classifying them as materials with good resistance to abrasion. The microstructure shows that the addition of n-Si in mortars refines their porous matrix, increases the amount of hydrated gels and generates significant changes in both Portlandite and Ettringite. This produced a significant improvement in freeze–thaw cycle resistance. The effect of n-Al on mortar was null or negative with respect to freeze–thaw cycle resistance.
Resumo:
As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.
Resumo:
As the world's synchrotrons and X-FELs endeavour to meet the need to analyse ever-smaller protein crystals, there grows a requirement for a new technique to present nano-dimensional samples to the beam for X-ray diffraction experiments.The work presented here details developmental work to reconfigure the nano tweezer technology developed by Optofluidics (PA, USA) for the trapping of nano dimensional protein crystals for X-ray crystallography experiments. The system in its standard configuration is used to trap nano particles for optical microscopy. It uses silicon nitride laser waveguides that bridge a micro fluidic channel. These waveguides contain 180 nm apertures of enabling the system to use biologically compatible 1.6 micron wavelength laser light to trap nano dimensional biological samples. Using conventional laser tweezers, the wavelength required to trap such nano dimensional samples would destroy them. The system in its optical configuration has trapped protein molecules as small as 10 nanometres.
Resumo:
Pure Water, is a crucial demand of creature life. Following industrial development, extra amount of toxic metals such as chromium enters the environmental cycle through the sewage, which is considered as a serious threat for organisms. One of the modern methods of filtration and removal of contaminants in water, is applying Nano-technology. According to specific property of silicate materials, in this article we try to survey increased power in composites and various absorption in several morphologies and also synthesis of Nano-metal silicates with different morphologies as absorbent of metal toxic ions. At first, we synthesize nano zink silicate with three morphologies considering context and the purpose of this survey. 1) Nano synthesis of zink silicate hollow cavity by hydrothermal method in mixed solvent system of ethanol/glycol polyethylene. 2) Zink nano wires silicate in a water-based system by controlling the amount of sodium silicate. 3) Synthesis of nano zink silicate membrane. After synthesizing, we measured the cadmium ion absorbance by synthesized nano zink silicates. Controlling PH, is the applied absorption method. Next step, we synthesized nano zink-magnesium silicate composite in two various morphologies of nanowires and membrane by different precent of zink and magnesium, in order to optimize synthesized nano metal silicate. We used zink nitrate and magnesium nitrate and also measured cadmium absorption by synthesized nano metal silicates in the same way of PH control absorption. In the 3rd step, in order to determine the impact of the type of metal in nano metal silicate, we synthesized nano magnesium silicate and compared its absorption with nano zink silicate. Furthermore, we calculated the optimal concentration in one of synthesizes. Optimal concentration is the process which has the maximum absorption. While applying two methods of absorption in the test, finally we compared the effect of absorption method on the absorption level. Below you find further steps of synthesis: 1) Using IR, RAMAN, XRD spectroscopy to check the accuracy of synthesis. 2) Checking the dispersion of nano particles in ethanol solution by light microscope. 3) Measuring and observing particles with scanning electron microscope (SEM). 4) Using atomic absorption device for measuring the cadmium concentration in water-based solutions. The nano metal silicates were synthesized successfully. All of synthesized nano absorbents have the cadmium ion absorbency. The cadmium absorption via nano absorbents depend on various factors such as kind of metal in nano silicate and percent of metal in nano metal silicate composite. Meanwhile the absorption and PH control of medium containing the absorbent and solution would affect the cadmium absorption.
Resumo:
A continuing challenge for pre-service teacher education is the learning transfer between the university based components and the practical school based components of their training. It is not clear how easily pre-service teachers can transfer university learnings into ‘in school’ practice. Similarly, it is not clear how easily knowledge learned in the school context can be disembedded from this particular context and understood more generally by the pre-service teacher. This paper examines the effect of a community of practice formed specifically to explore learning transfer via collaboration and professional enquiry, in ‘real time’, across the globe. “Activity Theory” (Engestrom, 1999) provided the theoretical framework through which the cognitive, physical and social processes involved could be understood. For the study, three activity systems formed community of practice network. The first activity system involved pre-service teachers at a large university in Queensland, Australia. The second activity system was introduced by the pre-service teachers and involved Year 12 students and teachers at a private secondary school also in Queensland, Australia. The third activity system involved university staff engineers at a large university in Pennsylvania, USA. The common object among the three activity systems was to explore the principles and applications of nanotechnology. The participants in the two Queensland activity systems, controlled laboratory equipment (a high powered Atomic Force Microscope – CPII) in Pennsylvania, USA, with the aim of investigating surface topography and the properties of nano particles. The pre-service teachers were to develop their remote ‘real time’ experience into school classroom tasks, implement these tasks, and later report their findings to other pre-service teachers in the university activity system. As an extension to the project, the pre-service teachers were invited to co-author papers relating to the project. Data were collected from (a) reflective journals; (b) participant field notes – a pre-service teacher initiative; (c) surveys – a pre-service teacher initiative; (d) lesson reflections and digital recordings – a pre-service teacher initiative; and (e) interviews with participants. The findings are reported in terms of the major themes: boundary crossing, the philosophy of teaching, and professional relationships The findings have implications for teacher education. The researchers feel that deliberate planning for networking between activity systems may well be a solution to the apparent theory/practice gap. Proximity of activity systems need not be a hindering issue.
Resumo:
Controlled syntheses of carbon nanotubes (CNTs) are highly desirable for nanoelectronic applications. To date, metallic catalyst particles have usually been deemed unavoidable for the nucleation and growth of any kind of CNTs. However, the presence of metal species mixed with the CNTs represents a shortcoming for most electronic applications, as metal particles are incompatible with silicon semiconductor technology. Recently it has been shown that it is possible to create nanotubes without the presence of metallic catalysts, by using SIO2, Ge and other non-metallic nanoparticles. Here we report on a metal-catalyst-free synthesis of CNTs, obtained through Ge nano-particles assembled on silicon surfaces previously patterned by Focused Ion Beam and nanoindentation.