994 resultados para NOR expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adherence of pathogenic Escherichia coli and Salmonella spp. to host cells is in part mediated by curli fimbriae which, along with other virulence determinants, are positively regulated by RpoS. Interested in the role and regulation of curli (SEF17) fimbriae of Salmonella enteritidis in poultry infection, we tested the virulence of naturally occurring S. enteritidis PT4 strains 27655R and 27655S which displayed constitutive and null expression of curli (SEF17) fimbriae, respectively, in a chick invasion assay and analysed their rpoS alleles. Both strains were shown to be equally invasive and as invasive as a wild-type phage type 4 strain and an isogenic derivative defective for the elaboration of curli. We showed that the rpoS allele of 27655S was intact even though this strain was non-curliated and we confirmed that a S. enteritidis rpoS::str(r) null mutant was unable to express curli, as anticipated. Strain 27655R, constitutively curliated, possessed a frameshift mutation at position 697 of the rpoS coding sequence which resulted in a truncated product and remained curliated even when transduced to rpoS::str(r). Additionally, rpoS mutants are known to be cold-sensitive, a phenotype confirmed for strain 27655R. Collectively, these data indicated that curliation was not a significant factor for pathogenesis of S. enteritidis in this model and that curliation of strains 27655R and 27655S was independent of RpoS. Significantly, strain 27655R possessed a defective rpoS allele and remained virulent. Here was evidence that supported the concept that different naturally occurring rpoS alleles may generate varying virulence phenotypic traits. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of protein kinase C (PKC) isoforms (PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta) was studied by immunoblotting in whole ventricles of rat hearts during postnatal development (1-26 days) and in the adult. PKC-alpha, PKC-beta 1, PKC-delta, PKC-epsilon, and PKC-zeta were detected in ventricles of 1-day-old rats, although PKC-alpha and PKC-beta 1 were only barely detectable. All isoforms were rapidly downregulated during development, with abundances relative to total protein declining in the adult to < 25% of 1-day-old values. PKC-beta 1 was not detectable in adult ventricles. The specific activity of PKC was also downregulated. The rat ventricular myocyte becomes amitotic soon after birth but continues to grow, increasing its protein content 40- to 50-fold between the neonate and the 300-g adult. An important question is thus whether the amount of PKC per myocyte is downregulated. With the use of isolated cells, immunoblotting showed that the contents per myocyte of PKC-alpha and PKC-epsilon increased approximately 10-fold between the neonatal and adult stages. In rat ventricles, the rank of association with the particulate fraction was PKC-delta > PKC-epsilon > PKC-zeta. Association of these isoforms with the particulate fraction was less in the adult than in the neonate. In primary cultures of ventricular myocytes prepared from neonatal rat hearts, 1 microM 12-O-tetradecanoylphorbol-13-acetate (TPA) elicited translocation of PKC-alpha, PKC-delta, and PKC-epsilon from the soluble to the particulate fraction in < 1 min, after which time no further translocation was observed. Prolonged exposure (16 h) of myocytes to 1 microM TPA caused essentially complete downregulation of these isoforms, although downregulation of PKC-epsilon was slower than for PKC-delta. In contrast, PKC-zeta was neither translocated nor downregulated by 1 microM TPA. Immunoblotting of human ventricular samples also revealed downregulation of PKC relative to total protein during fetal/postnatal development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. To assess the expression of TRAIL-R3 and the methylation of a CpG island within the TRAIL-R3 promoter both in cystadenoma tumors and primary and metastatic epithelial ovarian carcinoma (EOC).Methods. RNA was obtained from women with normal ovarian (NO) tissues (n = 18), ovarian serous cystadenoma tumors (n = 11) and EOC (n = 16) using Trizol (R). Quantitative PCR (gRT-PCR) was performed to quantify the relative levels of TRAIL-R3. The methylation frequency of the CpG island in the TRAIL-R3 promoter was assessed using the methylation-specific PCR (MSP) assay after DNA bisulfite conversion. The differences between the groups were evaluated using the chi-square, Student's t, ANOVA, Mann-Whitney U, Wilcoxon or Kruskal-Wallis tests as indicated. The survival rates were calculated using the Kaplan-Meier method.Results. Cystadenoma and metastatic EOC tumors expressed significantly more TRAIL-R3 mRNA than primary EOC tumors. Methylation of the TRAIL-R3 promoter was absent in NO tissues, while hemimethylation of the TRAIL-R3 promoter was frequently found in the neoplasia samples with 45.4% of the cystadenoma tumors, 8.3% of the primary EOC samples and 11.1% of the metastatic EOC samples showing at least partial methylation (p = 0.018). Neither the expression of TRAIL-R3 nor alterations in the methylation profile were associated to cumulative progression-free survival or the overall survival in EOC patients.Conclusions. Primary EOC is associated to a lower TRAIL-R3 expression, which leads to a better understanding of the complex disease and highlighting potential therapeutic targets. Promoter DNA methylation was not related to this finding, suggesting the presence of other mechanisms to transcriptional control. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods. Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70-80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx -) were measured. Concentration- response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results. High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NO x - levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion. The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation. © 2008 de Moraes et al; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soybean isoflavonoids have received significant attention due to their potential anticarcinogenic and antiproliferative effects and possible role in many signal transduction pathways. However, their mechanisms of action and their molecular targets remain to be further elucidated. In this paper, we demonstrated that two soybean isoflavones (genistein and daidzein) reduced the proliferation of the human colon adenocarcinoma grade II cell line (HT-29) at concentrations of 25 and 50-100 mu M, respectively. We then investigated the effects of genistein and daidzein by RT-PCR on molecules that involved in tumor development and progression by their regulation of cell proliferation. At a concentration of 50 mu M genistein, there was suppressed expression of beta-catenin (CTNNBIP1). Neither genistein nor daidzein affected APC (adenomatous polyposis coli) or survivin (BIRC5) expression when cells were treated with concentrations of 10 or 50 mu M. These data suggest that the down-regulation of beta-catenin by genistein may constitute an important determinant of the suppression of HT-29 cell growth and may be exploited for the prevention and treatment of colon cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims: Adrenomedullin (AM) is a peptide that displays cardiovascular protective activity. We investigated the effects of chronic ethanol consumption on arterial blood pressure, vascular reactivity to AM and the expression of AM system components in the rat mesenteric arterial bed (MAB). Methods: Male Wistar rats were treated with ethanol (20% vol/vol) for 6 weeks. Systolic, diastolic and mean arterial blood pressure were monitored in conscious rats. Vascular reactivity experiments were performed on isolated rat MAB. Matrix metalloproteinase-2 (MMP-2) levels were determined by gelatin zymography. Nitrite and nitrate generation were measured by chemiluminescence. Protein and mRNA levels of pre-pro-AM, CRLR (calcitonin receptor-like receptor) and RAMP1, 2 and 3 (receptor activity-modifying proteins) were assessed by western blot and quantitative real-time polymerase chain reaction, respectively. Results: Ethanol consumption induced hypertension and decreased the relaxation induced by AM and acetylcholine in endothelium-intact rat MAB. Phenylephrine-induced contraction was increased in endothelium-intact MAB from ethanol-treated rats. Ethanol consumption did not alter basal levels of nitrate and nitrite, nor did it affect the expression of MMP-2 or the net MMP activity in the rat MAB. Ethanol consumption increased mRNA levels of pre-pro-AM and protein levels of AM in the rat MAB. Finally, no differences in protein levels or mRNA of CRLR and RAMP1, 2 and 3 were observed after treatment with ethanol. Conclusion: Our study demonstrates that ethanol consumption increases blood pressure and the expression of AM in the vasculature and reduces the relaxation induced by this peptide in the rat MAB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The aim of this study was investigate the relationship between ABCB1 and ABCC3 gene expressions in peripheral blood cells (PBC) and the response to clopidogrel in patients with coronary arterial disease (CAD). Methods: Twenty-six male CAD patients (50-70 years) under treatment with clopidogrel (75 mg/day) for at least 5 days were selected. Blood samples were obtained to evaluate platelet reactivity and ABCB1 and ABCC3 mRNA expression. Platelet reactivity was measured in P2Y12 Reaction Units (PRU) using VerifyNow. RNA was extracted from PBC and mRNA levels were measured by qPCR, using GAPD as a reference gene. Results: Platelet response to clopidogrel was categorized in to PRU quartiles. Individuals with PRU values within the first quartile (Q1, <151 units) were considered good responders, while those who had PRU within the fourth quartile (Q4. PRU>260) were considered non-responders. ABCC3 was 1.7 times more expressed in Q4 than in Q1 PRU group (p=0.048). Moreover, CAD patients with low ABCC3 expression (Qe1, <2.5x10(-3)) had higher probability to have a good response to clopidogrel (OR: 18.00, 95%CI: 1.90-169.99, p=0.001). Univariate linear regression analysis demonstrated that low ABCC3 mRNA expression contributed with a reduction of 73 PRU in relation to the patients with expression value higher than 2.5x10(-3) (p=0.027). Neither ABCB1 mRNA levels nor clinical variables studied influenced PRU values. Conclusions: Low ABCC3 mRNA expression in peripheral blood cells is associated with increased clopidogrel response, but further studies are needed to describe the functional relationship of clopidogrel with the ABCC3. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Obesity has been associated with a variety of disease such as type II diabetes mellitus, arterial hypertension and atherosclerosis. Evidences have shown that exercise training promotes beneficial effects on these disorders, but the underlying mechanisms are not fully understood. The aim of this study was to investigate whether physical preconditioning prevents the deleterious effect of high caloric diet in vascular reactivity of rat aortic and mesenteric rings. Methods Male Wistar rats were divided into sedentary (SD); trained (TR); sedentary diet (SDD) and trained diet (TRD) groups. Run training (RT) was performed in sessions of 60 min, 5 days/week for 12 weeks (70–80% VO2max). Triglycerides, glucose, insulin and nitrite/nitrate concentrations (NOx-) were measured. Concentration-response curves to acetylcholine (ACh) and sodium nitroprusside (SNP) were obtained. Expression of Cu/Zn superoxide dismutase (SOD-1) was assessed by Western blotting. Results High caloric diet increased triglycerides concentration (SDD: 216 ± 25 mg/dl) and exercise training restored to the baseline value (TRD: 89 ± 9 mg/dl). Physical preconditioning significantly reduced insulin levels in both groups (TR: 0.54 ± 0.1 and TRD: 1.24 ± 0.3 ng/ml) as compared to sedentary animals (SD: 0.87 ± 0.1 and SDD: 2.57 ± 0.3 ng/ml). On the other hand, glucose concentration was slightly increased by high caloric diet, and RT did not modify this parameter (SD: 126 ± 6; TR: 140 ± 8; SDD: 156 ± 8 and TRD 153 ± 9 mg/dl). Neither high caloric diet nor RT modified NOx- levels (SD: 27 ± 4; TR: 28 ± 6; SDD: 27 ± 3 and TRD: 30 ± 2 μM). Functional assays showed that high caloric diet impaired the relaxing response to ACh in mesenteric (about 13%), but not in aortic rings. RT improved the relaxing responses to ACh either in aortic (28%, for TR and 16%, to TRD groups) or mesenteric rings (10%, for TR and 17%, to TRD groups) that was accompanied by up-regulation of SOD-1 expression and reduction in triglycerides levels. Conclusion The improvement in endothelial function by physical preconditioning in mesenteric and aortic arteries from high caloric fed-rats was directly related to an increase in NO bioavailability to the smooth muscle mostly due to SOD-1 up regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The submitted work concentrated on the study of mRNA expression of two distinct GABA transporters, GAT-1 and GAT-3, in the rat brain. For the detection and quantification of the chosen mRNAs, appropriate methods had to be established. Two methods, ribonuclease protection assay (RPA) and competitive RT-PCR were emloyed in the present study. Competitive RT-PCR worked out to be 20 times more sensitive as RPA. Unlike the sensitivity, the fidelity of both techniques was comparable with respect to their intra- and inter-assay variability.The basal mRNA levels of GAT-1 and GAT-3 were measured in various brain regions. Messenger RNAs for both transporters were detected in all tested brain regions. Depending on the region, the observed mRNA level for GAT-1 was 100-300 higher than for GAT-3. The GAT-1 mRNA levels were similar in all tested regions. The distribution of GAT-3 mRNA seemed to be more region specific. The strongest GAT-3 mRNA expression was detected in striatum, medulla oblongata and thalamus. The lowest levels of GAT-3 were in cortex frontalis and cerebellum.Furthermore, the mRNA expression for GAT-1 and GAT-3 was analysed under altered physiological conditions; in kindling model of epilepsy and also after long-term treatment drugs modulating GABAergic transmission. In kindling model of epilepsy, altered GABA transporter function was hypothesised by During and coworkers (During et al., 1995) after observed decrease in binding of nipecotic acid, a GAT ligand, in hippocampus of kindled animals. In the present work, the mRNA levels were measured in hippocampus and whole brain samples. Neither GAT-1 nor GAT-3 showed altered transcription in any tested region of kindled animals compared to controls. This leads to conclusion that an altered functionality of GABA transporters is involved in epilepsy rather than a change in their expression.The levels of GAT-1 and GAT-3 mRNAs were also measured in the brain of rats chronically treated with diazepam or zolpidem, GABAA receptor agonists. Prior to the molecular biology tests, behavioural analysis was carried out with chronically and acutely treated animals. In two tests, open field and elevated plus-maze, the basal activity exploration and anxiety-like behaviour were analysed. Zolpidem treatment increased exploratory activity. There were observed no differencies between chronically and acutely treated animals. Diazepam increased exploratory activity and decresed anxiety-like behaviour when applied acutely. This effect disappeard after chronic administration of diazepam. The loss of effect suggested a development of tolerance to effects of diazepam following long-term administration. Double treatment, acute injection of diazepam after chronic diazepam treatment, confirmed development of a tolerance to effects of diazepam. Also, the mRNAs for GAT-1 and GAT-3 were analysed in cortex frontalis, hippocampus, cerebellum and whole brain samples of chronically treated animals. The mRNA levels for any of tested GABA transporters did not show significant changes in any of tested region neither after diazepam nor zolpidem treatment. Therefore, changes in GAT-1 and GAT-3 transcription are probably not involved in adaptation of GABAergic system to long-term benzodiazepine administration and so in development of tolerance to benzodiazepines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Zusammenfassung Die Rolle verschiedener Mitglieder der NFAT- Familie in der Entwicklung von T- Zellen und deren Funktion wird intensiv untersucht, wohingegen vergleichbare Untersuchungen in Mastzellen rar sind. Mastzellen exprimieren eine Vielzahl biologisch hochaktiver Mediatoren und sind auf diese Weise sowohl in angeborenen als auch adaptiven Immunantworten beteiligt. Die von Mastzellen produzierten Th2-Cytokine verstärken lokal Th2- Reaktionen und TNF-alpha ist ein wichtiger Initiator antimikrobieller Antworten. In dieser Arbeit wird gezeigt, dass die Transkriptionsfaktoren NFATc1 und NFATc2 eine bedeutende Rolle in der Regulation der Expression von TNF-alpha und IL-13 einnehmen, wohingegen NFATc3 hierbei keine Funktion zukommt. Murine „Bone marrow derived mast cells“ (BMMC) aus NFATc2- defizienten Mäusen, aktiviert entweder durch Kreuzvernetzung des IgE- Rezeptors oder Ionomycin, zeigen eine drastisch reduzierte Expression dieser Cytokine verglichen mit Mastzellen aus Wildtyp- Mäusen. Genauere Untersuchungen zeigen, dass sowohl NFATc2 als auch NFATc1 an der Expression von IL-13 und TNF-alpha beteiligt sind, wohingegen sie auf die Degranulation und die Expression von IL-6 keinen Einfluss nehmen. Zusammenfassend scheint eine hohe Aktivität von NFAT- Faktoren für die Induktion des IL-13 und TNF-alpha Promoters in Mastzellen erforderlich zu sein, unabhängig davon, ob diese durch NFATc2 oder NFATc1 oder eine Kombination beider Transkriptionsfaktoren bewerkstelligt wird.