507 resultados para NOCTURNAL ERECTIONS
Resumo:
In most of Brazilian pig farms, the environmental acclimatization systems run manually. For night and early morning periods, this practice isn't appropriate, because, in general, there are not employees available to run these manual systems. This research aimed to compare the bioclimatic profile of two differently constructed facilities to the external environment, considering the period from 6 p.m. to 6 a.m. during the spring, in order to show that night and early morning temperatures do not coincides with growing pig's thermoneutral zone. For this reason, acclimatization must be also carried out at these periods. It was analyzed the dry bulb temperature, relative air humidity, temperature-humidity index (THI) and enthalpy data of the sheds and external areas. Under the studied conditions, it was possible to conclude that the constructively appropriate shed appeared to be less influenced by the external environment, allowing better thermal control for growing pigs. Further research must be conducted to verify if automatic cooling systems is needed during night and early morning.
Resumo:
Lack of the physiological nocturnal fall in blood pressure (BP) has been found in diabetics and it seems to be related to the presence of diabetic complications. The present study examined the changes in the nocturnal BP pattern of 8 normotensive insulin-dependent diabetic adolescents without nephropathy following improvement in glycemic control induced by an 8-day program of adequate diet and exercise. The same number of age- and sex-matched control subjects were studied. During the first and eighth nights of the program, BP was obtained by ambulatory BP monitoring. After a 10-min rest, 3 BP and heart rate (HR) recordings were taken and the mean values were considered to represent their awake values. The monitor was programmed to cuff insufflation every 20 min from 10:00 p.m. to 7:00 a.m. The glycemic control of diabetics improved since glycemia (212.0 ± 91.5 to 140.2 ± 69.1 mg/dl, P<0.03), urine glucose (12.7 ± 11.8 to 8.6 ± 6.4 g/24 h, P = 0.08) and insulin dose (31.1 ± 7.7 to 16.1 ± 9.7 U/day, P<0.01) were reduced on the last day. The mean BP of control subjects markedly decreased during the sleeping hours of night 1 (92.3 ± 6.4 to 78.1 ± 5.0 mmHg, P<0.001) and night 8 (87.3 ± 6.7 to 76.9 ± 3.6 mmHg, P<0.001). Diabetic patients showed a slight decrease in mean BP during the first night. However, the fall in BP during the nocturnal period increased significantly on the eighth night. The average awake-sleep BP variation was significantly higher at the end of the study (4.2 vs 10.3%, P<0.05) and this ratio turned out to be similar to that found in the control group (10.3 vs 16.3%). HR variation also increased on the eighth night in the diabetics. Following the metabolic improvement obtained at the end of the period, the nocturnal BP variation of diabetics was close to the normal pattern. We suggest that amelioration of glycemic control may influence the awake-sleep BP and HR differences. This effect may be due at least in part to an attenuated insulin stimulation of sympathetic activity
Resumo:
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired clonal syndrome characterized by intravascular hemolysis mediated by complement, thrombotic events and alterations in hematopoiesis. Basically, the molecular events which underlie the complexity of the syndrome consist of the absence of the glycosylphosphatidylinositol (GPI) anchor as a consequence of somatic mutations in the PIG-A gene, located on the X chromosome. The GPI group is responsible for the attachment of many proteins to the cytoplasmic membrane. Two of them, CD55 and CD59, have a major role in the inhibition of the action of complement on the cellular membrane of blood cells. The absence of GPI biosynthesis can lead to PNH. Since mutations in the PIG-A gene are always present in patients with PNH, the aim of this study was to characterize the mutations in the PIG-A gene in Brazilian patients. The analysis of the PIG-A gene was performed using DNA samples derived from bone marrow and peripheral blood. Conformation-sensitive gel electrophoresis was used for screening the mutation and sequencing methods were used to identify the mutations. Molecular analysis permitted the identification of three point mutations in three patients: one G->A transition in the 5' portion of the second intron, one T->A substitution in the second base of codon 430 (Leu430->stop), and one deletion deltaA in the third base of codon 63. This study represents the first description of mutations in the PIG-A gene in a Brazilian population.
Resumo:
Inhalation of hypertonic saline (HS) causes bronchoconstriction in asthmatic subjects. Repeated inhalation of HS leads to substantially reduced bronchoconstriction, known as the refractory period. Refractoriness due to different stimuli has also been described (cross-refractoriness). Nocturnal asthma is defined as an increase in symptoms, need for medication, airway responsiveness, and/or worsening of lung function that usually occurs from 4 to 6 am. Our objective was to determine the effect of refractoriness on nocturnal asthma. The challenge test consisted of inhalations of 4.5% saline with increasing durations until a reduction of 20% in forced expiratory volume in 1 s (FEV1) (PD20HS) or total time of 15.5 min. Twelve subjects with nocturnal asthma were challenged with HS at 16:00 and 18:00 h and FEV1 was measured at 4:00 h. One to 2 weeks later, FEV1 was determined at 16:00 and 4:00 h. LogPD20HS at 18:00 h was significantly greater than logPD20HS at 16:00 h, 0.51 ± 0.50 and 0.69 ± 0.60 mg, respectively (P = 0.0033). When subjects underwent two HS challenges in the afternoon, mean (± SD) FEV1 reduction was 206 ± 414 mL or 9.81 ± 17.42%. On the control day (without challenge in the afternoon) FEV1 reduction was 523 ± 308 mL or 22.75 ± 15.40% (P = 0.021). Baseline FEV1 values did not differ significantly between the control and study days, 2.48 ± 0.62 and 2.36 ± 0.46 L, respectively. The refractory period following HS challenges reduces the nocturnal worsening of asthma. This new concept may provide beneficial applications to asthmatic patients.
Resumo:
Restrictions in technology have limited past habitat selection studies for many species to the home-range level, as a finer-scale understanding was often not possible. Consequently, these studies may not identify the true mechanism driving habitat selection patterns, which may influence how such results are applied in conservation. We used GPS dataloggers with digital video recorders to identify foraging modes and locations in which endangered Burrowing Owls (Athene cunicularia) captured prey. We measured the coarse and fine-scale characteristics of vegetation at locations in which owls searched for, versus where they caught, vertebrate prey. Most prey items were caught using hover-hunting. Burrowing Owls searched for, and caught, vertebrate prey in all cover types, but were more likely to kill prey in areas with sparse and less dense vegetative cover. Management strategies designed to increase Burrowing Owl foraging success in the Canadian prairies should try to ensure a mosaic of vegetation heights across cover types.
Resumo:
1 Radar studies of nocturnal insect migration have often found that the migrants tend to form well-defined horizontal layers at a particular altitude. 2 In previous short-term studies, nocturnal layers were usually observed to occur at the same altitude as certain meteorological features, most notably at the altitudes of temperature inversions or nocturnal wind jets. 3 Statistical analyses are presented of four years’ data that compared the presence, sharpness and duration of nocturnal layer profiles (observed using continuously-operating entomological radar) with meteorological variables at typical layer altitudes over the UK. 4 Analysis of these large datasets demonstrated that temperature was the foremost meteorological factor persistently associated with the presence and formation of longer-lasting and sharper layers of migrating insects over southern UK.
Resumo:
Insects migrating at high altitude over southern Britain have been continuously monitored by automatically-operating, vertical-looking radars over a period of several years. During some occasions in the summer months, the migrants were observed to form well-defined layer concentrations, typically at heights of 200-400 m, in the stable night-time atmosphere. Under these conditions, insects are likely to have control over their vertical movements and are selecting flight heights which are favourable for long-range migration. We therefore investigated the factors influencing the formation of these insect layers by comparing radar measurements of the vertical distribution of insect density with meteorological profiles generated by the UK Met. Office’s Unified Model (UM). Radar-derived measurements of mass and displacement speed, along with data from Rothamsted Insect Survey light traps provided information on the identity of the migrants. We present here three case studies where noctuid and pyralid moths contributed substantially to the observed layers. The major meteorological factors influencing the layer concentrations appeared to be: (a) the altitude of the warmest air, (b) heights corresponding to temperature preferences or thresholds for sustained migration and (c), on nights when air temperatures are relatively high, wind-speed maxima associated with the nocturnal jet. Back-trajectories indicated that layer duration may have been determined by the distance to the coast. Overall, the unique combination of meteorological data from the UM and insect data from entomological radar described here show considerable promise for systematic studies of high-altitude insect layering.
Resumo:
Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.
Resumo:
Wind catcher systems have been employed in buildings in the Middle East for many centuries and they are known by different names in different parts of the region. Recently there has been an increase in the application of this approach for natural ventilation and passive cooling in the UK and other countries. This paper presents the results of experimental wind tunnel and smoke visualisation testing, combined with CFD modelling, to investigate the performance of the wind catcher. For this purpose, a full-scale commercial system was connected to a test room and positioned centrally in an open boundary wind tunnel. Because much ventilation design involves the use of computational fluid dynamics, the measured performance of the system was also compared against the results of CFD analysis. Configurations included both a heated and unheated space to determine the impact of internal heat sources on airflow rate. Good comparisons between measurement and CFD analysis were obtained. Measurements showed that sufficient air change could be achieved to meet both air quality needs and passive cooling.
Resumo:
Urban areas have both positive and negative influences on wildlife. For terrestrial mammals, one of the principle problems is the risk associated with moving through the environment whilst foraging. In this study, we examined nocturnal patterns of movement of urban-dwelling hedgehogs (Erinaceus europaeus) in relation to (i) the risks posed by predators and motor vehicles and (ii) nightly weather patterns. Hedgehogs preferentially utilised the gardens of semi-detached and terraced houses. However, females, but not males, avoided the larger back gardens of detached houses, which contain more of the habitat features selected by badgers. This difference in the avoidance of predation risk is probably associated with sex differences in breeding behaviour. Differences in nightly movement patterns were consistent with strategies associated with mating behaviour and the accumulation of fat reserves for hibernation. Hedgehogs also exhibited differences in behaviour associated with the risks posed by humans; they avoided actively foraging near roads and road verges, but did not avoid crossing roads per se. They were, however, significantly more active after midnight when there was a marked reduction in vehicle and foot traffic. In particular, responses to increased temperature, which is associated with increased abundance of invertebrate prey, were only observed after midnight. This variation in the timing of bouts of activity would reduce the risks associated with human activities. There were also profound differences in both area ranged and activity with chronological year which warrant further investigation.
Resumo:
Nocturnal cooling of air within a forest canopy and the resulting temperature profile may drive local thermally driven motions, such as drainage flows, which are believed to impact measurements of ecosystem–atmosphere exchange. To model such flows, it is necessary to accurately predict the rate of cooling. Cooling occurs primarily due to radiative heat loss. However, much of the radiative loss occurs at the surface of canopy elements (leaves, branches, and boles of trees), while radiative divergence in the canopy air space is small due to high transmissivity of air. Furthermore, sensible heat exchange between the canopy elements and the air space is slow relative to radiative fluxes. Therefore, canopy elements initially cool much more quickly than the canopy air space after the switch from radiative gain during the day to radiative loss during the night. Thus in modeling air cooling within a canopy, it is not appropriate to neglect the storage change of heat in the canopy elements or even to assume equal rates of cooling of the canopy air and canopy elements. Here a simple parameterization of radiatively driven cooling of air within the canopy is presented, which accounts implicitly for radiative cooling of the canopy volume, heat storage in the canopy elements, and heat transfer between the canopy elements and the air. Simulations using this parameterization are compared to temperature data from the Morgan–Monroe State Forest (IN, USA) FLUXNET site. While the model does not perfectly reproduce the measured rates of cooling, particularly near the top of the canopy, the simulated cooling rates are of the correct order of magnitude.
Resumo:
We describe 17 children with nocturnal or early-morning seizures who were switched to a proportionally higher evening dose of antiepileptic drugs and were retrospectively reviewed for seizure outcome and side effects. Of 10 children with unknown etiology, clinical presentation was consistent with nocturnal frontal lobe epilepsy (NFLE) in 5 and benign epilepsy with centrotemporal spikes (BECTS) in 3. After a mean follow-up of 5.3 months, 15 patients were classified as responders: 11 of these became seizure free (5 NFLE, 1 BECTS, 5 with structural lesions) and 4 (2 BECTS, 2 with structural lesions) experienced 75-90% reductions in seizures. Among two nonresponders, seizures in one had failed to resolve with epilepsy surgery. Nine subjects (53%) received monotherapy after dose modification, and none presented with worsening of seizures. Two complained of transient side effects (fatigue/somnolence). Differential dosing led to seizure freedom in 64.7% (11/17) of patients, and 88.2% (15/17) experienced >= 50% reductions in seizures. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Melatonin, an important marker of the endogenous rhythmicity in mammals, also plays a role in the body defence against pathogens and injuries. In vitro experiments have shown that either pro- or anti-inflammatory agents, acting directly in the organ, are able to change noradrenaline-induced pineal indoleamine production. Whereas corticosterone potentiates melatonin production, incubation of the gland with tumour necrosis factor-alpha decreases pineal hormonal production. In the present study, we show that nocturnal melatonin production measured by intra-pineal microdialysis is enhanced in pineals perfused with corticosterone at concentrations similar to those measured in inflamed animals. In vitro experiments suggest that this enhancement may be due to an increase in the activity of the two enzymes that convert serotonin to N-acetylserotonin (NAS) and NAS to melatonin. The present results support the hypothesis that the pineal gland is a sensor of inflammation mediators and that it plays a central role in the control of the inflammatory response.
Resumo:
It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-alpha serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats. (Endocrinology 152: 1253-1263, 2011)