977 resultados para NMR-diffusion
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
The quadrupole coupling constants (qcc) for39K and23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of39K in glycerol is found to be 1.7 MHz, and that of23Na is 1.6 MHz. The relaxation behavior of39K and23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τc is not simply proportional to the ratio of viscosity/temperature (ηT). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T2 measurements of39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of39K in tissue. Similar results and conclusions are found for23Na.
Resumo:
The first objective of this project is to develop new efficient numerical methods and supporting error and convergence analysis for solving fractional partial differential equations to study anomalous diffusion in biological tissue such as the human brain. The second objective is to develop a new efficient fractional differential-based approach for texture enhancement in image processing. The results of the thesis highlight that the fractional order analysis captured important features of nuclear magnetic resonance (NMR) relaxation and can be used to improve the quality of medical imaging.
Resumo:
We present a mini-review of the development and contemporary applications of diffusion-sensitive nuclear magnetic resonance (NMR) techniques in biomedical sciences. Molecular diffusion is a fundamental physical phenomenon present in all biological systems. Due to the connection between experimentally measured diffusion metrics and the microscopic environment sensed by the diffusing molecules, diffusion measurements can be used for characterisation of molecular size, molecular binding and association, and the morphology of biological tissues. The emergence of magnetic resonance was instrumental to the development of biomedical applications of diffusion. We discuss the fundamental physical principles of diffusion NMR spectroscopy and diffusion MR imaging. The emphasis is placed on conceptual understanding, historical evolution and practical applications rather than complex technical details. Mathematical description of diffusion is presented to the extent that it is required for the basic understanding of the concepts. We present a wide range of spectroscopic and imaging applications of diffusion magnetic resonance, including colloidal drug delivery vehicles; protein association; characterisation of cell morphology; neural fibre tractography; cardiac imaging; and the imaging of load-bearing connective tissues. This paper is intended as an accessible introduction into the exciting and growing field of diffusion magnetic resonance.
Resumo:
1H and 19F spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10–400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.
Resumo:
Photosynthesis is a chemical process in which the energy of the light quanta is transformed into chemical energy. Chlorophyll (Chl) molecules play a key role in photosynthesis; they function in the antennae systems and in the photosynthetic reaction center where the primary charge separation (CS) takes place. Bio-inspired mimicry of the CS is an essential unit in dye-sensitized solar cells. Aim of this study was to design and develop electron donor-acceptor (EDA) pairs from Chls and fullerenes (C60) or carbon nanotubes (CNT). The supramolecular approach was chosen, as long synthetic sequences required by the covalent approach lead to long reaction schemes and low yields. Here, a π-interaction between soluble CNTs and Chl was used in EDA construction. Also, a beta-face selective two-point bound Chl-C60 EDA was introduced. In addition, the photophysical properties of the supramolecular EDA dyads were analyzed. In organic chemistry, nuclear magnetic resonance (NMR) spectroscopy is the most vital analytical technique in use. Multi-dimensional NMR experiments have enabled a structural analysis of complex natural products and proteins. However, in mixture analysis NMR is still facing difficulties. In many cases overlapping signals can t be resolved even with the help of multi-dimensional experiments. In this work, an NMR tool based on simple host-guest chemistry between analytes and macromolecules was developed. Diffusion ordered NMR spectroscopy (DOSY) measures the mobilities of compounds in an NMR sample. In a liquid state NMR sample, each of the analytes has a characteristic diffusion coefficient, which is proportional to the size of the analyte. With normal DOSY experiment, provided that the diffusion coefficients of the analytes differ enough, individual spectra of analytes can be extracted. When similar sized analytes differ chemically, an additive can be introduced into the sample. Since macromolecules in a liquid state NMR sample can be considered practically stationary, even faint supramolecular interaction can change the diffusion coefficient of the analyte sufficiently for a successful resolution in DOSY. In this thesis, polyvinylpyrrolidone and polyethyleneglycol enhanced DOSY NMR techniques, which enable mixture analysis of similar in size but chemically differing natural products, are introduced.
Resumo:
H-1 and F-19 spin-lattice relaxation times in polycrystalline diammonium hexafluorozirconate have been measured in the temperature range of 10-400 K to elucidate the molecular motion of both cation and anion. Interesting features such as translational diffusion at higher temperatures, molecular reorientational motion of both cation and anion groups at intermediate temperatures and quantum rotational tunneling of the ammonium group at lower temperatures have been observed. Nuclear magnetic resonance (NMR) relaxation time results correlate well with the NMR second moment and conductivity studies reported earlier.
Resumo:
Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.
Resumo:
Electrolytes based on polyethylene glycol (PEG, mol.wt.8000) and LiCl of compositions, (PEG)(x)LiCl, x=4, 6, 8, 10, 12, 40, 60, where x is the O/Li ratio, were prepared by solution casting from methanol solutions. FTIR studies indicate that the ether oxygens of the polymer chain participate in Li+ ion conduction. The presence of a salt-polymer complex that melts around 190 degrees C was evidenced by DSC measurements for the electrolytes with compositions x<12. The highest conductivity was obtained at the composition x=10 which was attributed to the presence of a mostly amorphous compound. NMR measurements indicated two regions of motional narrowing, one attributable to the glass transition and another to translational diffusion.
Resumo:
H-1 Magic Angle Spinning (MAS) NMR of layered HNbWO6 . xH(2)O (x = 1.5, 0.5) is carried out at room temperature and at various spinning speeds (1-12 kHz). Results on the fully hydrated sample (x = 1.5) are consistent with the model of diffusion of H3O+ ions within the layers. In the partially dehydrated sample (x = 0.5) an exchange between the distinctly present cage protons and H3O+ protons leads to protonic conduction.
Resumo:
Benzene carboxylic acids and Benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by H-1, C-13 and N-15 NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
NMR spectroscopic separation of double bonded cis- and trans-isomers, that have different molecular shapes but identical mass have been carried out using Diffusion Ordered Spectroscopy (DOSY). The mixtures of fumaric acid and maleic acid, that have similar hydrodynamic radii, have resolved been on the basis of their diffusion coefficients arising due to their different tendencies to associate with micelles or reverse micelles. Sodium dodecyl sulfate (SDS) and Dioctyl sulfosuccinate sodium salt (AOT) have been used as the media to mimic the chromatographic conditions, modify the average mobility and to achieve differential diffusion rates. The best separation of the components has been achieved by Dioctyl sulfosuccinate sodium salt (AOT) in D2O solution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The study is the first report of the utilization of a crown ether as a new and versatile resolving agent for the diffusion edited separation of enantiomers, complex mixtures and constitutional isomers. As a consequence of different binding affinities of enantiomers of a chiral molecule and individual components of the complex mixtures with the crown ether, the molecules diffuse at different rates. The enhanced separation achieved due to matrix assisted diffusion permitted their separation in the diffusion dimension. The generality and wide utility of the new resolving agent and the methodology are demonstrated on diverse examples, such as an organic chiral molecule, constitutional isomers and complex mixture of molecules possessing different functional groups that possess nearly identical molecular weights.
Resumo:
Diffusion ordered spectroscopy (DOSY) generally fails to separate the peaks pertaining to isomeric species possessing identical molecular weights and similar hydrodynamic radii. The present study demonstrates the resolution of isomers using alpha/beta-cyclodextrin as a co-solute by Matrix Assisted Diffusion Ordered Spectroscopy. The resolution of isomers has been achieved by measuring the significant differences in the diffusion rates between the positional isomers of aminobenzoic acids, benzenedicarboxylic acids and between the cis, trans isomers, fumaric acid and maleic acid. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
NMR relaxation rates (1/T-1), magnetic susceptibility, and electrical conductivity studies in doped poly-3-methylthiophene are reported in this paper. The magnetic susceptibility data show the contributions from both Pauli and Curie spins, with the size of the Pauli term depending strongly on the doping level. Proton and fluorine NMR relaxation rates have been studied as a function of temperature (3-300 K) and field (for protons at 0.9, 9.0, 16.4, and 23.4 T, and for fluorine at 9.0 T). The temperature dependence of T-1 is classified into three regimes: (a) For T < (g mu(B) B/2k(B)), the relaxation mechanism follows a modified Korringa relation due to electron-electron interactions and disorder. H-1-T-1 is due to the electron-nuclear dipolar interaction in addition to the contact term. (b) For the intermediate temperature range (g mu(B) B/2k(B)) < T < T-BPP (the temperature where the contribution from the reorientation motion to the T-1 is insignificant) the relaxation mechanism is via spin diffusion to the paramagnetic centers. (c) In the high-temperature regime and at low Larmor frequency the relaxation follows the modified Bloembergen, Purcell, and Pound model. T-1 data analysis has been carried out in light of these models depending upon the temperature and frequency range of study. Fluorine relaxation data have been analyzed and attributed to the PF6 reorientation. The cross relaxation among the H-1 and F-19 nuclei has been observed in the entire temperature range suggesting the role of magnetic dipolar interaction modulated by the reorientation of the symmetric molecular subgroups. The data analysis shows that the enhancement in the Korringa ratio is greater in a less conducting sample. Intra-and interchain hopping of charge carriers is found to be a dominant relaxation mechanism at low temperature. Frequency dependence of T-1(-1) on temperature shows that at low temperature T < (g mu(B) B/2k(B))] the system shows three dimensions and changes to quasi one dimension at high temperature. Moreover, a good correlation between electrical conductivity, magnetic susceptibility, and NMR T-1 data has been observed.