978 resultados para NIR transflectance. Escherichia coli. Salmonella enteritidis. SIMCA. PLS-DA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expansion of global poultry production has increased the need to reduce or control the agents responsible for economic losses, including Salmonella spp. These bacteria are also of public health concern due to their potential to cause food poisoning, and, more recently, due to the antimicrobial resistance presented by these bacteria. Molecular biology is an important tool currently used in the diagnosis and research studies of main poultry diseases. The present studied analyzed 100 samples of Salmonella Enteritidis (SE) isolated from avian material aiming at detecting the class 1 integron gene, Integroninvolved in antimicrobial resistance, by means of polymerase chain reaction (PCR), and comparing it with plate inhibition test. Subsequently, SE samples were evaluated for their capacity to horizontally transfer this gene. There was no direct relationship between the presence of the class 1 integron gene and SE resistance to the 14 antimicrobials tested, as 80% of the studied samples were resistant to up to three antimicrobials, and did not present the aforementioned gene. However, horizontal transfer of this gene was accomplished in vitro (from Escherichia coli to Salmonella Enteritidis), demonstrating that capacity class 1 integron gene can be disseminated among enterobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli is a bacteria of the Enterobacteriacea family and it is part of the enterical microflora of mammals and of many species of birds. Salmonella spp. also belongs to the family Enterobacteriacea, it is responsible for human feed toxinfection outbreaks and usually isolated from domestic and wild birds. The present study analyzed the frequency of both agents in Psittaciformes in rehabilitation process for wildlife reintroduction. In 89 birds analyzed, 19% were infected with E. coli and 1,12% with Salmonella spp. It was carried out an analysis of the profile of antibiotic resistance in which was observed the efficiency of estreptomicin, tetraciclin, trimetoprim and gentamicin over the samples. The samples of E. coli were submitted to the Congo Red Binding test and to the Hemolisis test and 70,6% of positive samples for the first test and 53% for the second one were observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reports about acquired resistance to colistin in different bacteria species are increasing, including E. coli of animal origin, but reports of resistance in wild S. enterica of different serotypes from swine are not found in the literature. Results obtained with one hundred and twenty-six E. coli strains from diseased swine and one hundred and twenty-four S. enterica strains from diseased and carrier swine showed a frequency of 6.3% and 21% of colistin-resistant strains, respectively. When comparing the disk diffusion test with the agar dilution test to evaluate the strains, it was confirmed that the disk diffusion test is not recommended to evaluate colistin resistance as described previously. The colistin MIC 90 and MIC 50 values obtained to E. coli were 0.25 mu g/mL and 0.5 mu g/mL, the MIC 90 and MIC 50 to S. enterica were 1 mu g/mL and 8 mu g/mL. Considering the importance of colistin in control of nosocomial human infections with Gram-negative multiresistant bacteria, and the large use of this drug in animal production, the colistin resistance prevalence in enterobacteriaceae of animal origin must be monitored more closely.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diarrhoea caused by enterotoxigenic Escherichia coli (ETEC) requires adhesion of microorganisms to enterocytes. Hence, a promising approach to immunoprophylaxis is to elicit antibodies against colonisation factor antigens (CFAs). Genes encoding the most prevalent ETEC-specific surface antigens were cloned into Vibrio cholerae and Salmonella vaccine strains. Expression of surface antigens was assessed by electron-microscopy. Whereas negative staining was effective in revealing CFA/I and CS3, but not CS6, immunolabelling allowed identification of all surface antigens examined. The V. cholerae vaccine strain CVD103 did not express ETEC-specific colonisation factors, whereas CVD103-HgR expressed CS3 only. However, expression of both CFA/I and CS3 was demonstrated in Salmonella Ty21a.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli and Salmonella typhimurium strains grown in Luria–Bertani medium containing glucose secrete a small soluble heat labile organic molecule that is involved in intercellular communication. The factor is not produced when the strains are grown in Luria–Bertani medium in the absence of glucose. Maximal secretion of the substance occurs in midexponential phase, and the extracellular activity is degraded as the glucose is depleted from the medium or by the onset of stationary phase. Destruction of the signaling molecule in stationary phase indicates that, in contrast to other quorum-sensing systems, quorum sensing in E. coli and S. typhimurium is critical for regulating behavior in the prestationary phase of growth. Our results further suggest that the signaling factor produced by E. coli and S. typhimurium is used to communicate both the cell density and the metabolic potential of the environment. Several laboratory and clinical strains of E. coli and S. typhimurium were screened for production of the signaling molecule, and most strains make it under conditions similar to those shown here for E. coli AB1157 and S. typhimurium LT2. However, we also show that E. coli strain DH5α does not make the soluble factor, indicating that this highly domesticated strain has lost the gene(s) or biosynthetic machinery necessary to produce the signaling substance. Implications for the involvement of quorum sensing in pathogenesis are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nucleotide sequence of a 3 kb region immediately upstream of the sef operon of Salmonella enteritidis was determined. A 1230 base pair insertion sequence which shared sequence identity (> 75%) with members of the IS3 family was revealed. This element, designated IS1230, had almost identical (90% identity) terminal inverted repeats to Escherichia coli IS3 but unlike other IS3-like sequences lacked the two characteristic open reading frames which encode the putative transposase. S. enteritidis possessed only one copy of this insertion sequence although Southern hybridisation analysis of restriction digests of genomic DNA revealed another fragment located in a region different from the sef operon which hybridised weakly which suggested the presence of an IS1230 homologue. The distribution of IS1230 and IS1230-like elements was shown to be widespread amongst salmonellas and the patterns of restriction fragments which hybridised differed significantly between Salmonella serotypes and it is suggested that IS1230 has potential for development as a differential diagnostic tool.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extraintestinal pathogenic Escherichia coli (ExPEC) represent a diverse group of strains of E. coli, which infect extraintestinal sites, such as the urinary tract, the bloodstream, the meninges, the peritoneal cavity, and the lungs. Urinary tract infections (UTIs) caused by uropathogenic E. coli (UPEC), the major subgroup of ExPEC, are among the most prevalent microbial diseases world wide and a substantial burden for public health care systems. UTIs are responsible for serious morbidity and mortality in the elderly, in young children, and in immune-compromised and hospitalized patients. ExPEC strains are different, both from genetic and clinical perspectives, from commensal E. coli strains belonging to the normal intestinal flora and from intestinal pathogenic E. coli strains causing diarrhea. ExPEC strains are characterized by a broad range of alternate virulence factors, such as adhesins, toxins, and iron accumulation systems. Unlike diarrheagenic E. coli, whose distinctive virulence determinants evoke characteristic diarrheagenic symptoms and signs, ExPEC strains are exceedingly heterogeneous and are known to possess no specific virulence factors or a set of factors, which are obligatory for the infection of a certain extraintestinal site (e. g. the urinary tract). The ExPEC genomes are highly diverse mosaic structures in permanent flux. These strains have obtained a significant amount of DNA (predictably up to 25% of the genomes) through acquisition of foreign DNA from diverse related or non-related donor species by lateral transfer of mobile genetic elements, including pathogenicity islands (PAIs), plasmids, phages, transposons, and insertion elements. The ability of ExPEC strains to cause disease is mainly derived from this horizontally acquired gene pool; the extragenous DNA facilitates rapid adaptation of the pathogen to changing conditions and hence the extent of the spectrum of sites that can be infected. However, neither the amount of unique DNA in different ExPEC strains (or UPEC strains) nor the mechanisms lying behind the observed genomic mobility are known. Due to this extreme heterogeneity of the UPEC and ExPEC populations in general, the routine surveillance of ExPEC is exceedingly difficult. In this project, we presented a novel virulence gene algorithm (VGA) for the estimation of the extraintestinal virulence potential (VP, pathogenicity risk) of clinically relevant ExPECs and fecal E. coli isolates. The VGA was based on a DNA microarray specific for the ExPEC phenotype (ExPEC pathoarray). This array contained 77 DNA probes homologous with known (e.g. adhesion factors, iron accumulation systems, and toxins) and putative (e.g. genes predictably involved in adhesion, iron uptake, or in metabolic functions) ExPEC virulence determinants. In total, 25 of DNA probes homologous with known virulence factors and 36 of DNA probes representing putative extraintestinal virulence determinants were found at significantly higher frequency in virulent ExPEC isolates than in commensal E. coli strains. We showed that the ExPEC pathoarray and the VGA could be readily used for the differentiation of highly virulent ExPECs both from less virulent ExPEC clones and from commensal E. coli strains as well. Implementing the VGA in a group of unknown ExPECs (n=53) and fecal E. coli isolates (n=37), 83% of strains were correctly identified as extraintestinal virulent or commensal E. coli. Conversely, 15% of clinical ExPECs and 19% of fecal E. coli strains failed to raster into their respective pathogenic and non-pathogenic groups. Clinical data and virulence gene profiles of these strains warranted the estimated VPs; UPEC strains with atypically low risk-ratios were largely isolated from patients with certain medical history, including diabetes mellitus or catheterization, or from elderly patients. In addition, fecal E. coli strains with VPs characteristic for ExPEC were shown to represent the diagnostically important fraction of resident strains of the gut flora with a high potential of causing extraintestinal infections. Interestingly, a large fraction of DNA probes associated with the ExPEC phenotype corresponded to novel DNA sequences without any known function in UTIs and thus represented new genetic markers for the extraintestinal virulence. These DNA probes included unknown DNA sequences originating from the genomic subtractions of four clinical ExPEC isolates as well as from five novel cosmid sequences identified in the UPEC strains HE300 and JS299. The characterized cosmid sequences (pJS332, pJS448, pJS666, pJS700, and pJS706) revealed complex modular DNA structures with known and unknown DNA fragments arranged in a puzzle-like manner and integrated into the common E. coli genomic backbone. Furthermore, cosmid pJS332 of the UPEC strain HE300, which carried a chromosomal virulence gene cluster (iroBCDEN) encoding the salmochelin siderophore system, was shown to be part of a transmissible plasmid of Salmonella enterica. Taken together, the results of this project pointed towards the assumptions that first, (i) homologous recombination, even within coding genes, contributes to the observed mosaicism of ExPEC genomes and secondly, (ii) besides en block transfer of large DNA regions (e.g. chromosomal PAIs) also rearrangements of small DNA modules provide a means of genomic plasticity. The data presented in this project supplemented previous whole genome sequencing projects of E. coli and indicated that each E. coli genome displays a unique assemblage of individual mosaic structures, which enable these strains to successfully colonize and infect different anatomical sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A emodina é uma antraquinona estruturalmente semelhante à aloe-emodina e ambas tem sido apontadas como capazes de causar lesões oxidativas pela produção de ERO. Sua presença em produtos dermocosméticos e de higiene pessoal, associada às informações de que a fotoativação de antraquinonas levaria ao aumento de lesões oxidativas causadas por ERO, torna relevante o estudo da associação da emodina com a radiação UVA. O objetivo desse trabalho foi avaliar a citotoxicidade induzida pela associação da emodina com doses subletais de radiação UVA, em células de Escherichia coli (selvagem e cepas deficientes em enzimas do BER), através de ensaios de sobrevivência bacteriana (taxa de dose de UVA igual a 20J/m/s, totalizando 108kJ/m ao final de 90min de experimento), e em células da linhagem A549 pela exclusão do corante azul de tripan e sobrevivência clonogênica(taxa de dose de UVA igual a 20J/m/s, totalizando 36kJ/m ao final de 30min de experimento). Além disso, a genotoxicidade desses agentes foi estudada por eletroforese em gel de agarose de DNA plasmidial (taxa de dose de UVA igual a 16J/m/s, totalizando 57,6kJ/m ao final de 60min de experimento). De acordo com os resultados: i) Concentrações iguais ou abaixo de 5,55mM de emodina não alteraram a sobrevivência em nenhuma das cepas estudas; ii) As proteínas Xth e Fpg parecem ter um papel importante no reparo das lesões causadas pela emodina, em altas concentrações, sugerindo a participação do reparo por excisão de bases (BER) nesse processo; iii) A associação da emodina com a radiação UVA se mostrou citotóxica em todas as cepas de E. coli; iv) O gene nfo foi o mais importante na resistência bacteriana às lesões induzidas pela associação dos dois agentes, reforçando o envolvimento do BER e indicando uma possível participação do reparo por incisão de nucleotídeos (NIR); v) A emodina parece ter interagido com o DNA plasmidial, alterando seu padrão de migração no gel de agarose; vi) Em células da linhagem A549, a emodina causa efeitos tóxicos imediatos que parecem ser reparados ao longo do tempo. Porém, quando a droga permaneceu por 24 horas em contato com as células, houve uma diminuição na sobrevivência celular que parece ser dosedependente; vii) As concentrações de 10μM e 25μM de emodina, quando associadas ao UVA, se mostraram responsáveis pela redução de mais de 50% na sobrevivência nas células A549, chegando a 100% de morte quando a concentração de emodina foi de 50μM; viii) A radiação UVA potencializou os efeitos citotóxicos da emodina, nos 2 modelos experimentais do presente estudo, indicando que a interação da emodina com a radiação UVA seja genotóxica e portanto prejudicial à saúde.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crohn's Disease (CD) is a chronic inflammatory bowel disease of unknown etiology. Recent work has shown that a new pathotype of Escherichia coli, Adherent Invasive E. coli (AIEC) may be associated with CD. AIEC has been shown to adhere to and invade epithelial cells and to replicate within macrophages (together this is called the AIEC phenotype). In this thesis, the AIEC phenotype of 84 E. coli strains were determined in order to identify the prevalence of this phenotype within the E. coli genus. This study showed that a significant proportion of E. coli strains (approx. 5%) are capable of adhering to and invading epithelial cells and undergoing intramacrophage replication. Moreover, the results presented in this study indicate a correlation between survival in macrophage and resistance to grazing by amoeba supporting the coincidental evolution hypothesis that resistance to amoebae could be a driving force in the evolution of pathogenicity in some bacteria, such as AIEC. In addition, this study has identified an important regulatory role for the CpxA/R two component system (TCS) in the invasive abilities of AIEC HM605, a colonic mucosa-associated CD isolate. A mutation in cpxR was shown to be defective in the invasion of epithelial cells and this defect was shown to be independent of motility or the expression of Type 1 fimbriae, factors that have been shown to be involved in the invasion of another strain of AIEC, isolated from a patient with ileal CD, called LF82. The CpxA/R TCS responds to disturbances in the cell envelope and has been implicated in the virulence of a number of Gram negative pathogens. In this study it is shown that the CpxA/R TCS regulates the expression of a potentially novel invasin called SinH. SinH is found in a number of invasive strains of E. coli and Salmonella. Moreover work presented here shows that a critical mechanism underpinning AIEC persistence in macrophages is the repair of DNA bases damaged by macrophage oxidants. Together these findings provide evidence to suggest that AIEC are a diverse group of E. coli and possess diverse molecular mechanisms and virulence factors that contribute to the AIEC phenotype. In addition, AIEC may have gone through different evolutionary histories acquiring various molecular mechanisms ultimately culminating in the AIEC phenotype. The gastrointestinal (GI) tract harbors a diverse microbiota; most are symbiotic or commensal however some bacteria have the potential to cause disease (pathobiont). The work presented here provides evidence to support the model that AIEC are pathobionts. AIEC strains can be carried as commensals in healthy guts however, when the intestinal homeostasis is disrupted, such as in the compromised gut of CD patients, AIEC may behave as opportunistic pathogens and cause and/or contribute to disease by driving intestinal inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Escherichia coli K-12 WcaJ and the Caulobacter crescentus HfsE, PssY, and PssZ enzymes are predicted to initiate the synthesis of colanic acid (CA) capsule and holdfast polysaccharide, respectively. These proteins belong to a prokaryotic family of membrane enzymes that catalyze the formation of a phosphoanhydride bond joining a hexose-1-phosphate with undecaprenyl phosphate (Und-P). In this study, in vivo complementation assays of an E. coli K-12 wcaJ mutant demonstrated that WcaJ and PssY can complement CA synthesis. Furthermore, WcaJ can restore holdfast production in C. crescentus. In vitro transferase assays demonstrated that both WcaJ and PssY utilize UDP-glucose but not UDP-galactose. However, in a strain of Salmonella enterica serovar Typhimurium deficient in the WbaP O antigen initiating galactosyltransferase, complementation with WcaJ or PssY resulted in O-antigen production. Gas chromatography-mass spectrometry (GC-MS) analysis of the lipopolysaccharide (LPS) revealed the attachment of both CA and O-antigen molecules to lipid A-core oligosaccharide (OS). Therefore, while UDP-glucose is the preferred substrate of WcaJ and PssY, these enzymes can also utilize UDP-galactose. This unexpected feature of WcaJ and PssY may help to map specific residues responsible for the nucleotide diphosphate specificity of these or similar enzymes. Also, the reconstitution of O-antigen synthesis in Salmonella, CA capsule synthesis in E. coli, and holdfast synthesis provide biological assays of high sensitivity to examine the sugar-1-phosphate transferase specificity of heterologous proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that the TolA protein is required for the correct surface expression of the Escherichia coli O7 antigen lipopolysaccharide (LPS). In this work, delta tolA and delta pal mutants of E. coli K-12 W3110 were transformed with pMF19 (encoding a rhamnosyltransferase that reconstitutes the expression of O16-specific LPS), pWQ5 (encoding the Klebsiella pneumoniae O1 LPS gene cluster), or pWQ802 (encoding the genes necessary for the synthesis of Salmonella enterica O:54). Both DeltatolA and delta pal mutants exhibited reduced surface expression of O16 LPS as compared to parental W3110, but no significant differences were observed in the expression of K. pneumoniae O1 LPS and S. enterica O:54 LPS. Therefore, TolA and Pal are required for the correct surface expression of O antigens that are assembled in a wzy (polymerase)-dependent manner (like those of E. coli O7 and O16) but not for O antigens assembled by wzy-independent pathways (like K. pneumoniae O1 and S. enterica O:54). Furthermore, we show that the reduced surface expression of O16 LPS in delta tolA and delta pal mutants was associated with a partial defect in O-antigen polymerization and it was corrected by complementation with intact tolA and pal genes, respectively. Using derivatives of W3110 delta tolA and W3110 delta pal containing lacZ reporter fusions to fkpA and degP, we also demonstrate that the RpoE-mediated extracytoplasmic stress response is upregulated in these mutants. Moreover, an altered O16 polymerization was also detected under conditions that stimulate RpoE-mediated extracytoplasmic stress responses in tol+ and pal+ genetic backgrounds. A Wzy derivative with an epitope tag at the C-terminal end of the protein was stable in all the mutants, ruling out stress-mediated proteolysis of Wzy. We conclude that the absence of TolA and Pal elicits a sustained extracytoplasmic stress response that in turn reduces O-antigen polymerization but does not affect the stability of the Wzy O-antigen polymerase.