969 resultados para NICKEL-PHOSPHIDE CATALYSTS
Resumo:
Ni catalysts supported on gamma-Al2O3, CeO2 and CeO2-A1(2)O(3) systems were tested for catalytic CO2 reforming of methane into synthesis gas. Ni/CeO2-Al2O3 catalysts showed much better catalytic performance than either CeO2- or gamma-Al2O3-supported Ni catalysts. CeO2 as a support for Ni catalysts produced a strong metal-support interaction (SMSI), which reduced the catalytic activity and carbon deposition. However, CeO2 had positive effect on catalytic activity, stability, and carbon suppression when used as a promoter in Ni/gamma-Al2O3 catalysts for this reaction. A weight loading of 1-5 wt% CeO2 was found to be the optimum. Ni catalysts with CeO2 promoters reduced the chemical interaction between nickel and support, resulting in an increase in reducibility and stronger dispersion of nickel. The stability and less coking on CeO2-promoted catalysts are attributed to the oxidative properties of CeO2. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Carbon dioxide reforming of methane into syngas over Ni/gamma-Al2O3 catalysts was systematically studied. Effects of reaction parameters on catalytic activity and carbon deposition over Ni/gamma-Al2O3 catalysts were investigated. It is found that reduced NiA1204, metal nickel, and active species of carbon deposited were the active sites for this reaction. Carbon deposition on Ni/gamma Al2O3 varied depending on the nickel loading and reaction temperature and is the major cause of catalyst deactivation. Higher nickel loading produced more coke on the catalysts, resulting in rapid deactivation and plugging of the reactor. At 5 wt % Ni/gamma-Al2O3 catalyst exhibited high activity and much lesser magnitude of deactivation in 140 h. Characterization of carbon deposits on the catalyst surface revealed that there are two kinds of carbon species (oxidized and -C-C-) formed during the reaction and they showed different reactivities toward hydrogenation and oxidation. Kinetic studies showed that the activation energy for CO production in this reaction amounted to 80 kJ/mol and the rate of CO production could be described by a Langmuir-Hinshelwood model.
Resumo:
Catalytic reforming of methane with carbon dioxide was studied in a fixed-bed reactor using unpromoted and promoted Ni/gamma-Al2O3 catalysts. The effects of promoters, such as alkali metal oxide (Na2O), alkaline-earth metal oxides (MgO, CaO) and rare-earth metal oxides (La2O3, CeO2), on the catalytic activity and stability in terms of coking resistance and coke reactivity were systematically examined. CaO-, La2O3- and CeO2-promoted Ni/gamma-Al2O3 catalysts exhibited higher stability whereas MgO- and Na2O-promoted catalysts demonstrated lower activity and significant deactivation. Metal-oxide promoters (Na2O, MgO, La2O3, and CeO2) suppressed the carbon deposition, primarily due to the enhanced basicities of the supports and highly reactive carbon species formed during the reaction. In contrast, CaO increased the carbon deposition; however, it promoted the carbon reactivity. (C) 2000 Society of Chemical Industry.
Resumo:
Various oxide-promoted Ni catalysts supported on activated carbon were prepared, and the effect of promoters on the surface structure and properties of Ni catalysts was studied. Physical adsorption (Na adsorption), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) were used to characterize the catalysts. It is found that nickel is fairly uniformly distributed in the pores of the carbon support. Addition of promoters produces a more homogeneous distribution of nickel ion in carbon. However, distributions of promoters in the pores are varying. Addition of promoters increases the dispersion of nickel in carbon. Promoters also change the interaction between the carbon and Ni, resulting in significantly different behaviors of catalysts under various environments. CaO and MgO promoters improve the reactivity of nickel catalysts with O-2 but retard the interaction between nickel oxide and carbon. La2O3 shows some inhibiting effect on the interactions between nickel oxide and oxygen as well as carbon.
Resumo:
Titania is a versatile metal oxide with multiple applications. Titania supported catalysts are reported to be much more active compared to conventional silica or alumina supported ones in some reactions. TiO2 (anatase) having high surface area, with better crystallinity and high onset temperature of rutilation can be prepared by thermal hydrolysis of titanyl sulfate solution under controlled conditions. Calcinations at 350oC for 6 hrs were necessary to crystallize anatase. Method of preparation and percentage of the loaded metal oxides have greater influence on surface area. Drastic decrease in surface area was observed upon rutilation. Rutilation started at different temperatures depending on the metal oxide and the method of preparation. TiO2 should be characterized with high surface area, phase purity and high onset temperature of rutilation.Which should be well above the optimum temperature of a designated reaction in which it is employed as a catalyst. Variation in physical properties, depending upon the method of preparation is greater in TiO2 supported catalysts. Methanation activity was found to be highly dependent on nickel concentration present on the surface of the pellets. The methanation activity is strongly influenced by support material. The rate and turn over frequency of methanation and toluene oxidation activity of these catalysts are also equally important from an industrial point of view.
Resumo:
Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane
Resumo:
The present study describes the surface properties and catalytic activities of ferrospinels containing Co, Ni and Cu prepared by the low temperature route. Various physico-chemical methods have been adopted to characterise the systems. The reactions carried out are the Friedel-Crafts benzoylation of aromatics and the cyclohexanol decomposition. We have attempted the sulphate modification of the ferrites and have studied the surface and catalytic properties of the sulphated analogues.The work is presented in six chapters, the last chapter giving the summary and conclusions of the results presented earlier. Our samples prove as potential catalysts for the benzoylation of aromatics , for which truly heterogeneous catalysts are rare. Again , the materials show remarkable dehydration/dehydrogenation activities during cyclohexanol decomposition. There is plenty of scope for research in this field, especially in the development of environmentally benign catalysts for acylation reactions.
Resumo:
Ferrospinels of nickel, cobalt and copper and their sulphated analogues were prepared by the room temperature coprecipitation route to yield samples with high surface areas. The intrinsic acidity among the ferrites was found to decrease in the order: cobalt> nickel> copper. Sulphation caused an increase in the number of weak and medium strong acid sites, whereas the strong acid sites were left unaffected. Electron donor studies revealed that copper ferrite has both the highest proportion of strong sites and the lowest proportion of weak basic sites. All the ferrite samples proved to be good catalysts for the benzoy lation of toluene with benzoyl chloride. copper and cobalt ferrites being much more active than nickel ferrite. The catalytic activity for benzoylation was not much influenced by sulphation, but it increased remarkably with calcination temperature of the catalyst. Surface Lewis acid sites, provided by the octahedral cations on the spinel surface, are suggested to be responsible for the catalytic activity for the benzoylation reaction.
Resumo:
Adsorption of small molecules on the Ni{111} and NiO{111} surfaces is investigated under UHV and elevated pressures (~10-1 mbar) of hydrogen and water. The molecules considered are chosen for their relevance to understanding the mechanism of enantioselective hydrogenation on Raney Nickel modified by chiral molecules. Adsorption of water onto, and its subsequent reaction with, oxygen-covered Ni{111} is dependent on the initial atomic oxygen coverage. An OH species (O1s binding energy 531.5eV), oriented perpendicular to the surface, forms at atomic oxygen coverages <0.25ML. The reaction does not consume all the adsorbed oxygen for coverages ≥0.12ML. The p(2×2) atomic oxygen uperstructure is unreactive, while an OH species is formed on the p(√3×√3) superstructure at binding energy 530.9eV. L-alanine is adsorbed on Ni{111} as a model chiral modifier molecule. At low coverages, alanine forms a presumed tridentate alaninate species for coverages ≥0.11ML at 250K. A minority, bidentate zwitterionic species forms at coverages >0.11ML, but was not observed at 300K. Saturation occurs at 0.25ML. At high alanine coverages (≥0.19ML) and H2 pressure (≥1×10-2 mbar), the tridentate L-alaninate converts to bidentate zwitterionic L-alanine at 300K. Thermal evolution of L-alanine on Ni{111} under varying hydrogen pressures is examined. Adsorption of L-alanine onto hydroxylated NiO{111} at 300K in UHV, mimicking a catalyst surface under aqueous conditions, yields the tridentate alaninate which is immune to the effects of elevated hydrogen pressure. Exposing the L-alanine/Ni{111} adsorption system to water (≤10-1 mbar) oxidises the surface and recreates the L-alanine/hydroxylated NiO{111} system. Pyruvic acid on Ni{111} is examined as a model for hydrogenation substrate adsorption. Behaviour is coverage dependent and several conformations are possible at low coverages (≤0.1ML). Annealing at coverages <0.2ML causes a condensation reaction, releasing water onto the surface. High coverages do not condense and a saturation coverage of ~0.35ML is found.
Resumo:
The catalytic activity of Ni/CeO(2)-Al(2)O(3) catalysts modified with noble metals (Pt, Ir, Pd and Ru) was investigated for the steam reform of ethanol and glycerol. The catalysts were characterized by the following techniques: Energy-dispersive X-ray, BET, X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of CeO(2) dispersed on alumina. The promoting effect of noble metals included a decrease in the reduction temperatures of NiO species interacting with the support, due to the hydrogen spillover effect. It was seen that the addition of noble metal stabilized the Ni sites in the reduced state along the reforming reaction, increasing the ethanol and glycerol conversions and decreasing the coke formation. The higher catalytic performance for the ethanol steam reforming at 600 degrees C and glycerol steam reforming was obtained for the NiPd and NiPt catalysts, respectively, which presented an effluent gaseous mixture with the highest H(2) yield with reasonably low amounts of CO. (c) 2009 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
The performance of noble metal (Pt, Ru, Ir)-promoted Co/MgAl(2)O(4) catalysts for the steam reforming of ethanol was investigated. The catalysts were characterized by energy-dispersive X-ray spectroscopy, Xray diffraction, UV-vis diffuse reflectance spectroscopy, temperature-programmed reduction, temperature-programmed oxidation and X-ray absorption near edge structure (XANES). The results showed that the formation of inactive cobalt aluminate was suppressed by the presence of a MgAl(2)O(4) spinel phase. The effects of the noble metals included a marked lowering of the reduction temperatures of the cobalt surface species interacting with the support. It was seen that the addition of noble metal stabilized the Co sites in the reduced state throughout the reaction. Catalytic performance was enhanced in the promoted catalysts, particularly CoRu/MgAl(2)O(4), which showed the highest selectivity for H(2) production. (C) 2009 Elsevier B.V. All rights reserved.
Hydrogen production by steam reforming of ethanol over Ni-based catalysts promoted with noble metals
Resumo:
The catalytic activity of Ni/La(2)O(3)-Al(2)O(3) Catalysts modified with noble metals(Pt and Pd) was investigated in the steam reforming of ethanol. The catalysts were characterized by ICP, S(BFT), X-ray diffraction, temperature-programmed reduction, UV-vis diffuse reflectance spectroscopy and X-ray absorption fine structure (XANES). The results showed that the formation of inactive nickel aluminate was prevented by the presence of La(2)O(3) dispersed on the alumina. The promoting effect of noble metals included a marked decrease in the reduction temperatures of NiO species interacting with the support. due to the hydrogen spillover effect, facilitating greatly the reduction of the promoted catalysts. it was seen that the addition of noble metal stabilized the Ni sites in the reduced state throughout the reaction, increasing ethanol conversion and decreasing coke formation, irrespective of the nature or loading of the noble metal. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4, 8 and 14 mol% CaO, were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and impedance spectroscopy (IS) and tested in the carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of CaO-ZrO(2) solid solutions. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the support composition. The electrical properties of the support have a proportional effect on the catalytic activities. Catalytic tests were done at 800 degrees C for 6 h and the composition of the gaseous products and the catalytic conversion depended on the CaO-ZrO(2) solid solution composition and its influence on supported NiO species. A direct relation was found between the variation in the electrical conductivity of the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Nickel catalysts with a load of 5 wt.% Ni, supported on pure ZrO(2) and ZrO(2) stabilized with 4 mol%, 8 mol% and 12 mol% of Y(2)O(3), were prepared by the polymerization method. The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction with hydrogen (TPR-H(2)), specific surface area (BET) and electronic paramagnetic resonance (EPR) and tested as catalysts for carbon dioxide reforming of methane. The XRD patterns showed the presence of the oxide precursor (NiO) and the tetragonal phase of a Y(2)O(3)-ZrO(2) solid solution. According to the TPR-H(2) analysis, the reduction of various NiO species was influenced by the composition of the support. Catalytic tests were conducted at 800 degrees C for 6 h, and the composition of the gaseous products and the catalytic conversion rate depended on the composition of the Y(2)O(3)-ZrO(2) solid solution and its influence on the supported NiO species. A direct relation was observed between the variation in the support, the nickel species supported on it and the performance in the catalytic tests. (C) 2008 Elsevier B.V. All rights reserved.