968 resultados para NEUTRON REFLECTIVITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) are a primary component of the rail track safety and signalling systems. Rails are supported by two fishplates which are fastened by bolts and nuts and, with the support of sleepers and track ballast, form an integrated assembly. IRJ failure can result from progressive defects, the propagation of which is influenced by residual stresses in the rail. Residual stresses change significantly during service due to the complex deformation and damage effects associated with wheel rolling, sliding and impact. IRJ failures can occur when metal flows over the insulated rail gap (typically 6-8 mm width), breaks the electrically isolated section of track and results in malfunction of the track signalling system. In this investigation, residual stress measurements were obtained from rail-ends which had undergone controlled amounts of surface plastic deformation using a full scale wheel-on-track simulation test rig. Results were compared with those obtained from similar investigations performed on rail ends associated with ex-service IRJs. Residual stresses were measured by neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Measurements with constant gauge volume 3x3x3 mm3 were carried in the central vertical plane on 5mm thick sliced rail samples cut by an electric discharge machine (EDM). Stress evolution at the rail ends was found to exhibit characteristics similar to those of the ex-service rails, with a compressive zone of 5mm deep that is counterbalanced by a tension zone beneath, extending to a depth of around 15mm. However, in contrast to the ex-service rails, the type of stress distribution in the test-rig deformed samples was apparently different due to the localization of load under the particular test conditions. In the latter, in contrast with clear stress evolution, there was no obvious evolution of d0. Since d0 reflects rather long-term accumulation of crystal lattice damage and microstructural changes due to service load, the loading history of the test rig samples has not reached the same level as the ex-service rails. It is concluded that the wheel-on-rail simulation rig provides the potential capability for testing the wheel-rail rolling contact conditions in rails, rail ends and insulated rail joints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measurement of the moisture variation in soils is required for geotechnical design and research because soil properties and behavior can vary as moisture content changes. The neutron probe, which was developed more than 40 years ago, is commonly used to monitor soil moisture variation in the field. This study reports a full-scale field monitoring of soil moisture using a neutron moisture probe for a period of more than 2 years in the Melbourne (Australia) region. On the basis of soil types available in the Melbourne region, 23 sites were chosen for moisture monitoring down to a depth of 1500 mm. The field calibration method was used to develop correlations relating the volumetric moisture content and neutron counts. Observed results showed that the deepest “wetting front” during the wet season was limited to the top 800 to 1000 mm of soil whilst the top soil layer down to about 550mmresponded almost immediately to the rainfall events. At greater depths (550 to 800mmand below 800 mm), the moisture variations were relatively low and displayed predominantly periodic fluctuations. This periodic nature was captured with Fourier analysis to develop a cyclic moisture model on the basis of an analytical solution of a one-dimensional moisture flow equation for homogeneous soils. It is argued that the model developed can be used to predict the soil moisture variations as applicable to buried structures such as pipes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insulated rail joints (IRJs) are an integral part of the rail track signaling system and pose significant maintenance and replacement costs due to their low and fluctuating service lives. Failure occurs mainly in rail head region, bolt- holes of fishplates and web-holes of the rails. Propagation of cracks is influenced by the evolution of internal residual stresses in rails during rail manufacturing (hot-rolling, roller-straightening, and head-hardening process), and during service, particularly in heavy rail haul freight systems where loads are high. In this investigation, rail head accumulated residual stresses were analysed using neutron diffraction at the Australian Nuclear Science and Technology Organisation (ANSTO). Two ex-service two head-hardened rail joints damaged under different loading were examined and results were compared with those obtained from an unused rail joint reference sample in order to differentiate the stresses developed during rail manufacturing and stresses accumulated during rail service. Neutron diffraction analyses were carried out on the samples in longitudinal, transverse and vertical directions, and on 5mm thick sliceed samples cut by Electric Discharge Machining (EDM). For the rail joints from the service line, irrespective of loading conditions and in-service times, results revealed similar depth profiles of stress distribution. Evolution of residual stress fields in rails due to service was also accompanied by evidence of larger material flow based on reflected light and scanning electron microscopy studies. Stress evolution in the vicinity of rail ends was characterised by a compressive layer, approximately 5 mm deep, and a tension zone located approximately 5- 15mm below the surfaces. A significant variation of d0 with depth near the top surface was detected and was attributed to decarburization in the top layer induced by cold work. Stress distributions observed in longitudinal slices of the two different deformed rail samples were found to be similar. For the undeformed rail, the stress distributions obtained could be attributed to variations associated with thermo-mechanical history of the rail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was focused on studies of the metal hydride materials having a potential in building hydrogen storage systems with high gravimetric and volumetric efficiencies of H storage and formed / decomposed with high rates of hydrogen exchange. In situ diffraction studies of the metal-hydrogen systems were explored as a valuable tool in probing both the mechanism of the phase-structural transformations and their kinetics. Two complementary techniques, namely Neutron Powder Diffraction (NPD) and Synchrotron X-ray diffraction (SR XRD) were utilised. High pressure in situ NPD studies were performed at D2 pressures reaching 1000 bar at the D1B diffractometer accommodated at Institute Laue Langevin, Grenoble. The data of the time resolved in situ SR XRD were collected at the Swiss Norwegian Beam Lines, ESRF, Grenoble in the pressure range up to 50 bar H2 at temperatures 20-400°C. The systems studied by NPD at high pressures included deuterated Al-modified Laves-type C15 ZrFe2-xAlx intermetallics with x = 0.02; 0.04 and 0.20 and the CeNi5-D2 system. D content, hysteresis of H uptake and release, unit cell expansion and stability of the hydrides systematically change with Al content. Deuteration exhibited a very fast kinetics; it resulted in increase of the unit cells volumes reaching 23.5 % for ZrFe1.98Al0.02D2.9(1) and associated with exclusive occupancy of the Zr2(Fe,Al)2 tetrahedra. For CeNi5 deuteration yielded a hexahydride CeNi5D6.2 (20°C, 776 bar D2) and was accompanied by a nearly isotropic volume expansion reaching 30.1% (∆a/a=10.0%; ∆c/c=7.5%). Deuterium atoms fill three different interstitial sites including Ce2Ni2, Ce2Ni3 and Ni4. Significant hysteresis was observed on the first absorption-desorption cycle. This hysteresis decreased on the absorption-desorption cycling. A different approach to the development of H storage systems is based on the hydrides of light elements, first of all the Mg-based ones. These systems were studied by SR XRD. Reactive ball milling in hydrogen (HRBM) allowed synthesis of the nanostructured Mg-based hydrides. The experimental parameters (PH2, T, energy of milling, ball / sample ratio and balls size), significantly influence rate of hydrogenation. The studies confirmed (a) a completeness of hydrogenation of Mg into MgH2; (b) indicated a partial transformation of the originally formed -MgH2 into a metastable -MgH2 (a ratio / was 3/1); (c) yielded the crystallite size for the main hydrogenation product, -MgH2, as close to 10 nm. Influence of the additives to Mg on the structure and hydrogen absorption/desorption properties and cycle behaviour of the composites was established and will be discussed in the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective This study investigated the effectiveness of an innovative, manualized psychotherapy aimed at enhancing recovery and self-experience in people with schizophrenia, Metacognitive Narrative Psychotherapy. Design Treatment effects were assessed using a mixed methodology. Data were quantitatively assessed using a single sample, pre- and post-therapy design and qualitatively assessed using a case-study methodology. Methods Eleven patients diagnosed with schizophrenia received Metacognitive Narrative Psychotherapy over the course of 11 to 26 months. Therapists were seven supervised postgraduate psychology students. On average patients attended 49 sessions over the course of therapy. Patients completed interview-based and self-report measures for general and treatment-specific outcomes at pre-, mid-, and post-treatment. Results Quantitative analyses showed that patients significantly improved on the general outcome of subjective recovery, as well as the treatment-specific outcome of self-reflectivity, with medium to large effect sizes. Case-study evidence also showed improvements for some patients in symptom severity, and narrative coherence and complexity. Conclusions These results are consistent with previous case-study evidence and suggest that this manualized version of Metacognitive Narrative Psychotherapy produces general and approach-specific improvements for people with schizophrenia. Replication is needed to ascertain its effectiveness with a larger sample size and within a controlled design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups co; valently connected by a hydrocarbon spacer. Small-angle neutron scattering measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(m)-N+(CH3)(2)C(16)H(33)2Br(-) dimeric surfactants, referred to-as 16-m-16, for different length of hydrocarbon spacers m-3-6, 8, 10, and 12, are reported. The measurements have been carried out at various concentrations: C=2.5 and 10 mM for all m and C=30 and 50 mM for m greater than or equal to 5. It is found that micellar structure depends on the length of the spacer. Micelles are disks for m=3, cylindrical for m=4, and prolate ellipsoidals for other values of m. These structural results are in agreement with the theoretical predictions based on the packing parameter. It has also been observed that conformation of the spacer and the hydrophobic chains in the interior of the micelle change as the length of the spacer is increased. The concentration dependence for m greater than or equal to 5 shows that the effect of surfactant concentration on the size of the micelle is more pronounced for m=5 and 12 than for the intermediate spacers. The fractional charge on the micelle increases with the increase in spacer length and decreases when the concentration is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction measurement is carried out on GexSe1-x glasses, where 0.1 less than or equal to x less than or equal to 0.4, in a Q interval of 0.55-13.8 Angstrom(-1). The first sharp diffraction peak (FSDP) in the structure factor, S(Q), shows a systematic increase in the intensity and shifts to a lower Q with increasing Ge concentration. The coherence length of FSDP increases with x and becomes maximum for 0.33 less than or equal to x less than or equal to 0.4. The Monte-Carlo method, due to Soper, is used to generate S(Q) and also the pair correlation function, g(r). The generated S(Q) is in agreement with the experimental data for all x. Analysis of the first four peaks in the total correlation function, T(r), shows that the short range order in GeSe2 glass is due to Ge(Se-1/2)(4) tetrahedra, in agreement with earlier reports. Se-rich glasses contain Se-chains which are cross-linked with Ge(Se-1/2)(4) tetrahedra. Ge-2(Se-1/2)(6) molecular units are the basic structural units in Ge-rich, x = 0.4, glass. For x = 0.2, 0.33 and 0.4 there is evidence for some of the tetrahedra being in an edge-shared configuration. The number of edge-shared tetrahedra in these glasses increase with increasing Ge content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a unified model to explain Quasi-Periodic Oscillation (QPO), particularly of high frequency, observed from black hole and neutron star systems globally. We consider accreting systems to be damped harmonic oscillators exhibiting epicyclic oscillations with higher-order nonlinear resonance to explain QPO. The resonance is expected to be driven by the disturbance from the compact object at its spin frequency. The model explains various properties parallelly for both types of the compact object. It describes QPOs successfully for ten different compact sources. Based on this, we predict the spin frequency of the neutron star Sco X-1 and specific angular momentum of black holes GRO J1655–40, XTE J1550–564, H1743–322, and GRS 1915+105.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reflectivity of the bottom of a solar pond increases on account of the accumulation of dirt or the presence of undissolved salt. The effect of the reflection of the solar radiation at the bottom of the pond on the seasonal performance of the pond has been studied using a three zone model. The spectral reflectivity of dirt and common salt were measured in the laboratory and used in the analysis. The results obtained from the analysis show that the presence of dirt at the bottom of the pond does not affect the performance of the pond substantially. On the other hand, the presence of undissolved salt at the bottom of the pond results in substantial deterioration of the pond performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron diffraction techniques have been employed to investigate the structure of PbO-PbCl2 glasses as a function of composition in the nominal range PbO.PbCl2 to 9PbO.PbCl2. It is concluded that, whereas the first Pb-O distance is well defined, the distribution of Pb-Cl distances is much broader, in agreement with a previous EXAFS study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutron-antineutron transition amplitude caused by an effective six fermion interaction with strength λeff is calculated within the context of the MIT Bag Model. The transition mass δm is found to have the value λeff×3×10−4(GeV6).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutron Scattering and Molecular Dynamics Evidence for Levitation Effect in Nanopores ... Neutron scattering measurements and molecular dynamics simulations have been carried out on the three isomers of pentane (neopentane (neo), isopentane (iso), and n-pentane (n-)) adsorbed in zeolite NaY. ... In order to understand this surprising dependence, the dimensionless levitation parameter, γ, for atomic systems may be modified to suit molecular systems.