956 resultados para NEUTRALIZING ANTIBODIES


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The available virus-like particle (VLP)-based prophylactic vaccines against specific human papillomavirus (HPV) types afford close to 100% protection against the type-associated lesions and disease. Based on papillomavirus animal models, it is likely that protection against genital lesions in humans is mediated by HPV type-restricted neutralizing antibodies that transudate or exudate at the sites of genital infection. However, a correlate of protection was not established in the clinical trials because few disease cases occurred, and true incident infection could not be reliably distinguished from the emergence or reactivation of prevalent infection. In addition, the current assays for measuring vaccine-induced antibodies, even the gold standard HPV pseudovirion (PsV) in vitro neutralization assay, may not be sensitive enough to measure the minimum level of antibodies needed for protection. Here, we characterize the recently developed model of genital challenge with HPV PsV and determine the minimal amounts of VLP-induced neutralizing antibodies that can afford protection from genital infection in vivo after transfer into recipient mice. Our data show that serum antibody levels >100-fold lower than those detectable by in vitro PsV neutralization assays are sufficient to confer protection against an HPV PsV genital infection in this model. The results clearly demonstrate that, remarkably, the in vivo assay is substantially more sensitive than in vitro PsV neutralization and thus may be better suited for studies to establish correlates of protection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background The MPER region of the HIV-1 envelope glycoprotein gp41 is targeted by broadly neutralizing antibodies. However, the localization of this epitope in a hydrophobic environment seems to hamper the elicitation of these antibodies in HIV infected individuals. We have quantified and characterized anti-MPER antibodies by ELISA and by flow cytometry using a collection of mini gp41-derived proteins expressed on the surface of 293T cells. Longitudinal plasma samples from 35 HIV-1 infected individuals were assayed for MPER recognition and MPER-dependent neutralizing capacity using HIV-2 viruses engrafted with HIV-1 MPER sequences. Results Miniproteins devoid of the cysteine loop of gp41 exposed the MPER on 293T cell membrane. Anti-MPER antibodies were identified in most individuals and were stable when analyzed in longitudinal samples. The magnitude of the responses was strongly correlated with the global response to the HIV-1 envelope glycoprotein, suggesting no specific limitation for anti-MPER antibodies. Peptide mapping showed poor recognition of the C-terminal MPER moiety and a wide presence of antibodies against the 2F5 epitope. However, antibody titers failed to correlate with 2F5-blocking activity and, more importantly, with the specific neutralization of HIV-2 chimeric viruses bearing the HIV-1 MPER sequence; suggesting a strong functional heterogeneity in anti-MPER humoral responses. Conclusions Anti-MPER antibodies can be detected in the vast majority of HIV-1 infected individuals and are generated in the context of the global anti-Env response. However, the neutralizing capacity is heterogeneous suggesting that eliciting neutralizing anti-MPER antibodies by immunization might require refinement of immunogens to skip nonneutralizing responses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Antibodies with the ability to block the interaction of HIV-1 envelope glycoprotein (Env) gp120 with CD4, including those overlapping the CD4 binding site (CD4bs antibodies), can protect from infection by HIV-1, and their elicitation may be an interesting goal for any vaccination strategy. To identify gp120/CD4 blocking antibodies in plasma samples from HIV-1 infected individuals we have developed a competitive flow cytometry-based functional assay. In a cohort of treatment-naïve chronically infected patients, we showed that gp120/ CD4 blocking antibodies were frequently elicited (detected in 97% plasma samples) and correlated with binding to trimeric HIV-1 envelope glycoproteins. However, no correlation was observed between functional CD4 binding blockade data and titer of CD4bs antibodies determined by ELISA using resurfaced gp120 proteins. Consistently, plasma samples lacking CD4bs antibodies were able to block the interaction between gp120 and its receptor, indicating that antibodies recognizing other epitopes, such as PGT126 and PG16, can also play the same role. Antibodies blocking CD4 binding increased over time and correlated positively with the capacity of plasma samples to neutralize the laboratory-adapted NL4.3 and BaL virus isolates, suggesting their potential contribution to the neutralizing workforce of plasma in vivo. Determining whether this response can be boosted to achieve broadly neutralizing antibodies may provide valuable information for the design of new strategies aimed to improve the anti-HIV-1 humoral response and to develop a successful HIV- 1 vaccine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main objective of the present study was to assess the specificity and sensitivity of a modified assay using short synthetic peptides of the V3 region of HIV-1 gp120, which is the main target for neutralizing antibodies. Results from an enzyme immunoassay (EIA) employing a panel of synthetic peptides of HIV-1 subtypes and using urea washes to detect high avidity antibodies (AAV3) were compared with those obtained by the heteroduplex mobility assay and DNA sequencing. The EIA correctly typed 100% of subtype B (sensitivity = 1.0; specificity = 0.95), 100% of HIV-1 E samples (sensitivity = 1.0; specificity = 1.0), and 95% of subtype C specimens (sensitivity = 0.95; specificity = 0.94). In contrast, only 50% of subtype A (sensitivity = 0.5; specificity = 0.95), 60% of subtype D (sensitivity = 0.6; specificity = 1.0), and 28% of subtype F samples (sensitivity = 0.28; specificity = 0.95) were correctly identified. This approach was also able to discriminate in a few samples antibodies from patients infected with B variants circulating in Brazil and Thailand that reacted specifically. The assays described in this study are relatively rapid and simple to perform compared to molecular approaches and can be used to screen large numbers of serum or plasma samples. Moreover, the classification in subtypes (genotypes) may overestimate HIV-1 diversity and a classification into serotypes, based on antigenic V3 diversity or another principal neutralization domain, may be more helpful for vaccine development and identification of variants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Two recombinant baculoviruses were produced in order to obtain a bovine viral diarrhea virus (BVDV) immunogen: AcNPV/E2 expressing E2 glycoprotein, and AcNPV/E0E1E2 expressing the polyprotein region coding for the three structural proteins of BVDV (E0, E1, and E2). Mice were immunized with Sf9 cells infected with the recombinant baculoviruses in a water in oil formulation and the production of neutralizing antibodies was evaluated. Since E2 elicited higher neutralizing antibody titers than E0-E1-E2 polyprotein, it was selected to immunize cattle. Calves received two doses of recombinant E2 vaccine and were challenged with homologous BVDV 37 days later. The recombinant immunogen induced neutralizing titers which showed a mean value of 1.5 ± 0.27 on the day of challenge and reached a top value of 3.36 ± 0.36, 47 days later (84 days post-vaccination). On the other hand, sera from animals which received mock-infected Sf9 cells did not show neutralizing activity until 25 days post-challenge (62 days post-vaccination), suggesting that these antibodies were produced as a consequence of BVDV challenge. Even when no total protection was observed in cattle, in vitro viral neutralization assays revealed that the recombinant immunogen was able to induce neutralizing antibody synthesis against the homologous strain as well as against heterologous strains in a very efficient way.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Levels of rabies virus neutralization antibody in sera from vaccinated dogs and cattle were either measured by mouse neutralization test (MNT) or by rapid fluorescent focus inhibition test (RFFIT), performed on CER monolayers. The two tests were compared for their ability to detect the 0.5 International Units/ml (I.U.) recommended by the World Health Organization (WHO) as the minimum response for proof of rabies immunization. A significant correlation was found between the two tests (n = 211; r = 0.9949 in dogs and 0.9307 in cows, p < 0.001), good sensitivity (87.5%), specificity (94.7%) and agreement (96.6%) as well. RFFIT method standardized on CER cell system for neutralizing antibodies detection turns the diagnosis easier and less expensive, specially when a great number of samples must be tested from endemic areas as commonly found in Brazil. (c) 2005 the International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the indirect immunoperoxidase virus neutralization (IPVN) and mouse neutralization test (MNT) to detect antibodies against rabies virus from vaccinated dogs and cattle. The IPVN was set up for the ability to measure 0.5 International Units/ml (IU) of antibody required by the World Health Organization and the Office International des Epizooties as the minimum response for proof of rabies immunization. IPVN was developed and standardized in chicken embryo related (CER) cell line when 141 dog and 110 cattle sera were applied by serial five-fold dilutions (1:5, 1:25, 1:125) as well as the positive and negative reference controls, all added in four adjacent wells, of 96-well microplates. A 50 µl amount of CVS32 strain dilution containing 50-200 TCID50/ml was mixed to each serum dilution, and after 90 min 50 µl of 3 x 10(5) cells/mlcell suspension added to each well. After five days of incubation, the monolayers were fixed and the IPVN test performed. The correlation coefficient between the MNT and IPVN performed in CER cells was r = 0.9949 for dog sera (n = 100) and r = 0.9307 for cattle sera (n = 99), as well as good specificity (94.7%), sensitivity (87.5%), and agreement (96.6%) were also obtained. IPVN technique can adequately identify vaccinated and unvaccinated animals, even from low-responding vaccinated animals, with the advantage of low cost and faster then MNT standard test.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural antibodies (NA) specific for infectious pathogens are found at low titer (usually <1:40) in the serum of healthy, non-immunized, individuals. Therefore, NA are part of the first line of defence against blood borne microorganisms. They directly neutralize viral infections or lyse pathogens by activating the complement cascade. In addition, recent studies highlighted their role in the pooling of infectious pathogens and other antigens to the spleen. This prevents infection of vital target organs and enhances the induction of adaptive immune responses. Specific T and B-cell responses are exclusively induced in highly organized secondary lymphoid organs including lymph nodes and the spleen. As a consequence, mice with disrupted microorganisation of lymphoid organs have defective adaptive immunity. In addition, some pathogens including lymphocytic choriomeningitis virus (LCMV), Leishmania and HIV developed strategies to destroy the splenic architecture in order to induce an acquired immunosuppression and to establish persistent infection. NA antibodies enhance early neutralizing antibodies in the absence of T help mainly by targeting antigen to the splenic marginal zone. In addition, by activating the complement cascade, NA enhance T cell and T-cell dependent B-cell responses. Therefore, natural antibodies are an important link between innate and adaptive immunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Maternal antibodies protect newborns whilst they are immunologically immature. This study shows that maternal antibodies can also shape the B cell repertoire of the offspring long after the maternal antibodies themselves become undetectable. V(H)DJ(H) gene-targeted (VI10) mice expressing a heavy chain specific for vesicular stomatitis virus (VSV) produce a 20-fold increased spontaneous titer of VSV-neutralizing antibodies. When transferred from mother to offspring, these antibodies prevented accumulation of Ag-specific transitional type 2 and marginal zone B cells with an activated phenotype and favored selection to the B cell follicles. This effect was B cell-intrinsic and lasted up to adulthood. The pups nursed by mothers producing specific antibodies developed higher endogenous antibody titers of this specificity which perpetuated the effects of specific B cell selection into the mature follicular compartment, presumably by blocking auto-Ag-dependent development of transitional type 2 B cells in the spleen. This repertoire change was functional, as following infection of adult mice with VSV, those pups that had received specific maternal antibodies as neonates had increased pre-immune titers and mounted strong early IgG neutralizing antibodies.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in Southeast Asia. Vaccination of domestic pigs has been suggested as a "one health" strategy to reduce viral disease transmission to humans. The efficiency of two lentiviral TRIP/JEV vectors expressing the JEV envelope prM and E glycoproteins at eliciting protective humoral response was assessed in a mouse model and piglets. METHODOLOGY/PRINCIPAL FINDINGS A gene encoding the envelope proteins prM and E from a genotype 3 JEV strain was inserted into a lentiviral TRIP vector. Two lentiviral vectors TRIP/JEV were generated, each expressing the prM signal peptide followed by the prM protein and the E glycoprotein, the latter being expressed either in its native form or lacking its two C-terminal transmembrane domains. In vitro transduction of cells with the TRIP/JEV vector expressing the native prM and E resulted in the efficient secretion of virus-like particles of Japanese encephalitis virus. Immunization of BALB/c mice with TRIP/JEV vectors resulted in the production of IgGs against Japanese encephalitis virus, and the injection of a second dose one month after the prime injection greatly boosted antibody titers. The TRIP/JEV vectors elicited neutralizing antibodies against JEV strains belonging to genotypes 1, 3, and 5. Immunization of piglets with two doses of the lentiviral vector expressing JEV virus-like particles led to high titers of anti-JEV antibodies, that had efficient neutralizing activity regardless of the JEV genotype tested. CONCLUSIONS/SIGNIFICANCE Immunization of pigs with the lentiviral vector expressing JEV virus-like particles is particularly efficient to prime antigen-specific humoral immunity and trigger neutralizing antibody responses against JEV genotypes 1, 3, and 5. The titers of neutralizing antibodies elicited by the TRIP/JEV vector are sufficient to confer protection in domestic pigs against different genotypes of JEV and this could be of a great utility in endemic regions where more than one genotype is circulating.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the obstacles to AIDS vaccine development is the variability of HIV-1 within individuals and within infected populations, enabling viral escape from highly specific vaccine induced immune responses. An understanding of the different immune mechanisms capable of inhibiting HIV infection may be of benefit in the eventual design of vaccines effective against HIV-1 variants. To study this we first compared the immune responses induced in Rhesus monkeys by using two different immunization strategies based on the same vaccine strain of HIV-1. We then utilized a chimeric simian/HIV that expressed the envelope of a dual tropic HIV-1 escape variant isolated from a later time point from the same patient from which the vaccine strain was isolated. Upon challenge, one vaccine group was completely protected from infection, whereas all of the other vaccinees and controls became infected. Protected macaques developed highest titers of heterologous neutralizing antibodies, and consistently elevated HIV-1-specific T helper responses. Furthermore, only protected animals had markedly increased concentrations of RANTES, macrophage inflammatory proteins 1α and 1β produced by circulating CD8+ T cells. These results suggest that vaccine strategies that induce multiple effector mechanisms in concert with β-chemokines may be desired in the generation of protective immune responses by HIV-1 vaccines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poster presented at the 2015 Keystone Symposia Conference X5: HIV Vaccines. Banff, Alberta, Canada, 22-27 March 2015

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results: TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions: Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scorpion stings are a public health problem in Brazil, with most incidents involving the species Tityus serrulatus. Some T serrulatus toxins may act as immunogens for the production of a specific anti-venom, but many of the component toxins remain poorly characterized. Here, we describe the immunological characteristics of the toxin Ts1 (also known as TsVII and Ts-gamma) and evaluate production of neutralizing antibodies against the crude venom of T serrulatus. Recombinant Ts1 with one copy (Ts1((1))) or two copies in tandem (Ts1((2))) was expressed in BL21 (DE3) cells. Rabbits and mice were immunized with the recombinant proteins (inclusion bodies) and then tested for production of neutralizing antibodies. Neutralization assays showed that anti-Ts1((1)) and anti-Ts1((2)) protected animals challenged with T serrulatus crude venom and native Ts1 Thus, Ts1 could be used in a mixed ""cocktail"" of immunogens for T serrulatus anti-venom production. (C) 2008 Elsevier Ltd. All rights reserved.