979 resultados para NATURAL IMAGES


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminance changes within a scene are ambiguous; they can indicate reflectance changes, shadows, or shading due to surface undulations. How does vision distinguish between these possibilities? When a surface painted with an albedo texture is shaded, the change in local mean luminance (LM) is accompanied by a similar modulation of the local luminance amplitude (AM) of the texture. This relationship does not necessarily hold for reflectance changes or for shading of a relief texture. Here we concentrate on the role of AM in shape-from-shading. Observers were presented with a noise texture onto which sinusoidal LM and AM signals were superimposed, and were asked to indicate which of two marked locations was closer to them. Shape-from-shading was enhanced when LM and AM co-varied (in-phase), and was disrupted when they were out-of-phase. The perceptual differences between cue types (in-phase vs out-of-phase) were enhanced when the two cues were present at different orientations within a single image. Similar results were found with a haptic matching task. We conclude that vision can use AM to disambiguate luminance changes. LM and AM have a positive relationship for rendered, undulating, albedo textures, and we assess the degree to which this relationship holds in natural images. [Supported by EPSRC grants to AJS and MAG].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A well-known property of orientation-tuned neurons in the visual cortex is that they are suppressed by the superposition of an orthogonal mask. This phenomenon has been explained in terms of physiological constraints (synaptic depression), engineering solutions for components with poor dynamic range (contrast normalization) and fundamental coding strategies for natural images (redundancy reduction). A common but often tacit assumption is that the suppressive process is equally potent at different spatial and temporal scales of analysis. To determine whether it is so, we measured psychophysical cross-orientation masking (XOM) functions for flickering horizontal Gabor stimuli over wide ranges of spatio-temporal frequency and contrast. We found that orthogonal masks raised contrast detection thresholds substantially at low spatial frequencies and high temporal frequencies (high speeds), and that small and unexpected levels of facilitation were evident elsewhere. The data were well fit by a functional model of contrast gain control, where (i) the weight of suppression increased with the ratio of temporal to spatial frequency and (ii) the weight of facilitatory modulation was the same for all conditions, but outcompeted by suppression at higher contrasts. These results (i) provide new constraints for models of primary visual cortex, (ii) associate XOM and facilitation with the transient magno- and sustained parvostreams, respectively, and (iii) reconcile earlier conflicting psychophysical reports on XOM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benet from second-order sensitivity. Analysis of the first-and second-order contents of natural images suggests that these cues tend to occur together, but their phase relationship varies. We have shown that in-phase combinations of LM and AM are perceived as a shaded corrugated surface whereas the anti-phase combination can be seen as corrugated when presented alone or as a flat material change when presented in a plaid containing the in-phase cue. We now extend these findings using new stimulus types and a novel haptic matching task. We also introduce a computational model based on initially separate first-and second-order channels that are combined within orientation and subsequently across orientation to produce a shading signal. Contrast gain control allows the LM + AM cue to suppress responses to the LM-AM when presented in a plaid. Thus, the model sees LM -AM as flat in these circumstances. We conclude that second-order vision plays a key role in disambiguating the origin of luminance changes within an image. © ARVO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Humans are profoundly affected by the surroundings which they inhabit. Environmental psychologists have produced numerous credible theories describing optimal human environments, based on the concept of congruence or “fit” (1, 2). Lack of person/environment fit can lead to stress-related illness and lack of psychosocial well-being (3). Conversely, appropriately designed environments can promote wellness (4) or “salutogenesis” (5). Increasingly, research in the area of Evidence-Based Design, largely concentrated in the area of healthcare architecture, has tended to bear out these theories (6). Patients and long-term care residents, because of injury, illness or physical/ cognitive impairment, are less likely to be able to intervene to modify their immediate environment, unless this is designed specifically to facilitate their particular needs. In the context of care settings, detailed design of personal space therefore takes on enormous significance. MyRoom conceptualises a personalisable room, utilising sensoring and networked computing to enable the environment to respond directly and continuously to the occupant. Bio-signals collected and relayed to the system will actuate application(s) intended to positively influence user well-being. Drawing on the evidence base in relation to therapeutic design interventions (7), real-time changes in ambient lighting, colour, image, etc. respond continuously to the user’s physiological state, optimising congruence. Based on research evidence, consideration is also given to development of an application which uses natural images (8). It is envisaged that actuation will require machine-learning based on interpretation of data gathered by sensors; sensoring arrangements may vary depending on context and end-user. Such interventions aim to reduce inappropriate stress/ provide stimulation, supporting both instrumental and cognitive tasks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the most significant research topics in computer vision is object detection. Most of the reported object detection results localise the detected object within a bounding box, but do not explicitly label the edge contours of the object. Since object contours provide a fundamental diagnostic of object shape, some researchers have initiated work on linear contour feature representations for object detection and localisation. However, linear contour feature-based localisation is highly dependent on the performance of linear contour detection within natural images, and this can be perturbed significantly by a cluttered background. In addition, the conventional approach to achieving rotation-invariant features is to rotate the feature receptive field to align with the local dominant orientation before computing the feature representation. Grid resampling after rotation adds extra computational cost and increases the total time consumption for computing the feature descriptor. Though it is not an expensive process if using current computers, it is appreciated that if each step of the implementation is faster to compute especially when the number of local features is increasing and the application is implemented on resource limited ”smart devices”, such as mobile phones, in real-time. Motivated by the above issues, a 2D object localisation system is proposed in this thesis that matches features of edge contour points, which is an alternative method that takes advantage of the shape information for object localisation. This is inspired by edge contour points comprising the basic components of shape contours. In addition, edge point detection is usually simpler to achieve than linear edge contour detection. Therefore, the proposed localization system could avoid the need for linear contour detection and reduce the pathological disruption from the image background. Moreover, since natural images usually comprise many more edge contour points than interest points (i.e. corner points), we also propose new methods to generate rotation-invariant local feature descriptors without pre-rotating the feature receptive field to improve the computational efficiency of the whole system. In detail, the 2D object localisation system is achieved by matching edge contour points features in a constrained search area based on the initial pose-estimate produced by a prior object detection process. The local feature descriptor obtains rotation invariance by making use of rotational symmetry of the hexagonal structure. Therefore, a set of local feature descriptors is proposed based on the hierarchically hexagonal grouping structure. Ultimately, the 2D object localisation system achieves a very promising performance based on matching the proposed features of edge contour points with the mean correct labelling rate of the edge contour points 0.8654 and the mean false labelling rate 0.0314 applied on the data from Amsterdam Library of Object Images (ALOI). Furthermore, the proposed descriptors are evaluated by comparing to the state-of-the-art descriptors and achieve competitive performances in terms of pose estimate with around half-pixel pose error.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of soil structure, i.e., the pores, is of vital importance in different fields of science and technology. Total pore volume (porosity), pore surface, pore connectivity and pore size distribution are some (probably the most important) of the geometric measurements of pore space. The technology of X-ray computed tomography allows us to obtain 3D images of the inside of a soil sample enabling study of the pores without disturbing the samples. In this work we performed a set of geometrical measures, some of them from mathematical morphology, to assess and quantify any possible difference that tillage may have caused on the soil. We compared samples from tilled soil with samples from a soil with natural vegetation taken in a very close area. Our results show that the main differences between these two groups of samples are total surface area and pore connectivity per unit pore volume.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present an approach for image-based surface classification using multi-class Support Vector Machine (SVM). Classifying surfaces in aerial images is an important step towards an increased aircraft autonomy in emergency landing situations. We design a one-vs-all SVM classifier and conduct experiments on five data sets. Results demonstrate consistent overall performance figures over 88% and approximately 8% more accurate to those published on multi-class SVM on the KTH TIPS data set. We also show per-class performance values by using normalised confusion matrices. Our approach is designed to be executed online using a minimum set of feature attributes representing a feasible and ready-to-deploy system for onboard execution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Collections of biological specimens are fundamental to scientific understanding and characterization of natural diversity - past, present and future. This paper presents a system for liberating useful information from physical collections by bringing specimens into the digital domain so they can be more readily shared, analyzed, annotated and compared. It focuses on insects and is strongly motivated by the desire to accelerate and augment current practices in insect taxonomy which predominantly use text, 2D diagrams and images to describe and characterize species. While these traditional kinds of descriptions are informative and useful, they cannot cover insect specimens "from all angles" and precious specimens are still exchanged between researchers and collections for this reason. Furthermore, insects can be complex in structure and pose many challenges to computer vision systems. We present a new prototype for a practical, cost-effective system of off-the-shelf components to acquire natural-colour 3D models of insects from around 3 mm to 30 mm in length. ("Natural-colour" is used to contrast with "false-colour", i.e., colour generated from, or applied to, gray-scale data post-acquisition.) Colour images are captured from different angles and focal depths using a digital single lens reflex (DSLR) camera rig and two-axis turntable. These 2D images are processed into 3D reconstructions using software based on a visual hull algorithm. The resulting models are compact (around 10 megabytes), afford excellent optical resolution, and can be readily embedded into documents and web pages, as well as viewed on mobile devices. The system is portable, safe, relatively affordable, and complements the sort of volumetric data that can be acquired by computed tomography. This system provides a new way to augment the description and documentation of insect species holotypes, reducing the need to handle or ship specimens. It opens up new opportunities to collect data for research, education, art, entertainment, biodiversity assessment and biosecurity control. © 2014 Nguyen et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural free convection is a process of great importance in disciplines from hydrology to meteorology, oceanography, planetary sciences, and economic geology, and for applications in carbon sequestration and nuclear waste disposal. It has been studied for over a century - but almost exclusively in theoretical and laboratory settings, Despite its importance, conclusive primary evidence of free convection in porous media does not currently exist in a natural field setting. Here, we present recent electrical resistivity measurements from a sabkha aquifer near Abu Dhabi, United Arab Emirates, where large density inversions exist. The geophysical images from this site provide, for the first time, compelling field evidence of fingering associated with natural free convection in groundwater.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acoustic recordings play an increasingly important role in monitoring terrestrial environments. However, due to rapid advances in technology, ecologists are accumulating more audio than they can listen to. Our approach to this big-data challenge is to visualize the content of long-duration audio recordings by calculating acoustic indices. These are statistics which describe the temporal-spectral distribution of acoustic energy and reflect content of ecological interest. We combine spectral indices to produce false-color spectrogram images. These not only reveal acoustic content but also facilitate navigation. An additional analytic challenge is to find appropriate descriptors to summarize the content of 24-hour recordings, so that it becomes possible to monitor long-term changes in the acoustic environment at a single location and to compare the acoustic environments of different locations. We describe a 24-hour ‘acoustic-fingerprint’ which shows some preliminary promise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is important to identify the ``correct'' number of topics in mechanisms like Latent Dirichlet Allocation(LDA) as they determine the quality of features that are presented as features for classifiers like SVM. In this work we propose a measure to identify the correct number of topics and offer empirical evidence in its favor in terms of classification accuracy and the number of topics that are naturally present in the corpus. We show the merit of the measure by applying it on real-world as well as synthetic data sets(both text and images). In proposing this measure, we view LDA as a matrix factorization mechanism, wherein a given corpus C is split into two matrix factors M-1 and M-2 as given by C-d*w = M1(d*t) x Q(t*w).Where d is the number of documents present in the corpus anti w is the size of the vocabulary. The quality of the split depends on ``t'', the right number of topics chosen. The measure is computed in terms of symmetric KL-Divergence of salient distributions that are derived from these matrix factors. We observe that the divergence values are higher for non-optimal number of topics - this is shown by a `dip' at the right value for `t'.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the near future, robots and CG (computer graphics) will be required to exhibit creative behaviors that reflect designers’ abstract images and emotions. However, there are no effective methods to develop abstract images and emotions and support designers in designing creative behaviors that reflect their images and emotions. Analogy and blending are two methods known to be very effective for designing creative behaviors. The aim of this study is to propose a method for developing designers’ abstract behavioral images and emotions and giving shape to them by constructing a computer system that supports a designer in the creation of the desired behavior. This method focuses on deriving inspiration from the behavioral aspects of natural phenomena rather than simply mimicking it. We have proposed two new methods for developing abstract behavioral images and emotions by which a designer can use analogies from natural things such as animals and plants even when there is a difference in the number of joints between the natural object and the design target. The first method uses visual behavioral images, the second uses rhythmic behavioral images. We have demonstrated examples of designed behaviors to verify the effectiveness of the proposed methods.