984 resultados para NADPH-oxidoreductase do citocromo P450 humano (CYPOR)
Resumo:
In this work, we used sugarcane as a model due to its importance for sugar and ethanol production. Unlike the current plant models, sugarcane presents a complex genetics and an enormous allelic variation. Here, we report the analysis of SAGE libraries produced using the shoot apical meristem from contrasted genotypes by flowering induction (non-flowering vs. early-flowering varieties) grown under São Paulo state conditions. The expression pattern was analyzed using samples from São Paulo (SP) and Rio Grande do Norte (RN) states. These results showed that cDNAs identified by SAGE libraries had differential expression only in São Paulo state samples. Furthermore, the cDNA identified CYP (Citocrome P450) was chosen for in silico and genome characterization because it was found in SAGE libraries and subtractive libraries from samples from RN. Phylogenetic trees showed the relationship for these sequences. Furthermore, the qRT-PCR for CYP showed a potential role as flowering indutor for RN samples considering different isophorms. Considering the results present here, it can be consider that CYP gene may be used as molecular marker
Resumo:
Introducción: las enfermedades cardiovasculares (EC) constituyen la principal causa de muerte a nivel mundial. La etiología es multifactorial, pueden influir diversos factores como la dieta, los hábitos de vida, el nivel de ejercicio físico o la carga genética. El gran número de genes implicados, así como sus diversas variantes, pueden influir sobre el riesgo de padecer enfermedades cardiovasculares por medio de distintas vías. Objetivo: determinar la relación existente entre diferentes polimorfismos genéticos y el riesgo individual de EC en población infantil y adulta. Métodos: se llevó a cabo una búsqueda bibliográfica utilizando la base de datos PubMed. La búsqueda se limitó a un periodo de diez años y a metaanálisis realizados en humanos. Resultados: se establece relación entre el riesgo de enfermedad cardiovascular y los siguientes polimorfismos genéticos: cromosoma 9p21, apolipoproteína A5, apolipoproteínas E2, E3 y E4, gen PPARG o PPARΥ, genes implicados en el metabolismo lipídico, gen MTHFR, citocromo P450, factor V de coagulación o factor de Leiden (FVL) y gen VKORC. Conclusiones: Se han identificado un gran número de genes relacionados con la enfermedad cardiovascular. La carga genética puede influir de manera directa o indirecta sobre el riesgo cardiovascular, modificando factores de riesgo para enfermedad cardiovascular o actuando sobre la medicación empleada para tratarla.
Resumo:
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Resumo:
Cytochrome P450 oxidoreductase (POR) is an enzyme that is essential for multiple metabolic processes, chiefly among them are reactions catalyzed by cytochrome P450 proteins for metabolism of steroid hormones, drugs and xenobiotics. Mutations in POR cause a complex set of disorders that often resemble defects in steroid metabolizing enzymes 17α-hydroxylase, 21-hydroxylase and aromatase. Since our initial reports of POR mutations in 2004, more than 200 different mutations and polymorphisms in POR gene have been identified. Several missense variations in POR have been tested for their effect on activities of multiple steroid and drug metabolizing P450 proteins. Mutations in POR may have variable effects on different P450 partner proteins depending on the location of the mutation. The POR mutations that disrupt the binding of co-factors have negative impact on all partner proteins, while mutations causing subtle structural changes may lead to altered interaction with specific partner proteins and the overall effect may be different for each partner. This review summarizes the recent discoveries related to mutations and polymorphisms in POR and discusses these mutations in the context of historical developments in the discovery and characterization of POR as an electron transfer protein. The review is focused on the structural, enzymatic and clinical implications of the mutations linked to newly identified disorders in humans, now categorized as POR deficiency.
Resumo:
This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH-cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b(5), squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b(5) are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b(5) on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell-culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism.
Resumo:
Cytochrome P450 proteins are involved in metabolism of drugs and xenobiotics. In the endoplasmic reticulum a single nicotinamide adenine dinucleotide phosphate (NADPH) P450 oxidoreductase (POR) supplies electrons to all microsomal P450s for catalytic activity. POR is a flavoprotein that contains both flavin mononucleotide and flavin adenine dinucleotide as cofactors and uses NADPH as the source of electrons. We have recently reported a number of POR mutations in the patients with disordered steroidogenesis. In the first report we had described missense mutations (A287P, R457H, V492E, C569Y, and V608F) identified in four patients with defects in steroid production. Each POR variant was produced as recombinant N-27 form of the enzyme in bacteria and as full-length form in yeast. Membranes from bacteria or yeast expressing normal or variant POR were purified and their activities were characterized in cytochrome c and CYP17A1 assays. Later we have published a larger study that described a whole range of POR mutations and characterized the mutants/polymorphisms A115V, T142A, M263V, Y459H, A503V, G539R, L565P, R616X, V631I, and F646del from the sequencing of patient DNA. We also studied POR variants Y181D, P228L, R316W, G413S, and G504R that were available in public databases or published literature. Three-dimensional structure of rat POR is known and we have used this structure to deduce the structure-function correlation of POR mutations in human. The missense mutations found in patients with disordered steroidogenesis are generally in the co-factor binding and functionally important domains of POR and the apparent polymorphisms are found in regions with lesser structural importance. A variation in POR can alter the activity of all microsomal P450s, and therefore, can affect the metabolism of drugs and xenobiotics even when the P450s involved are otherwise normal. It is important to study the genetic and biochemical basis of POR variants in human population to gain information about possible differences in P450 mediated reactions among the individuals carrying a variant or polymorphic form of POR that could impact their metabolism.
Resumo:
Mutations in NADPH P450 oxidoreductase (POR) cause a broad spectrum of human disease with abnormalities in steroidogenesis. We have studied the impact of P450 reductase mutations on the activity of CYP19A1. POR supported CYP19A1 activity with a calculated Km of 126 nm for androstenedione and a Vmax of 1.7 pmol/min. Mutations R457H and V492E located in the FAD domain of POR that disrupt electron transfer caused a complete loss of CYP19A1 activity. The A287P mutation of POR decreased the activities of CYP17A1 by 60-80% but had normal CYP19A1 activity. Molecular modeling and protein docking studies suggested that A287P is involved in the interaction of POR:CYP17A1 but not in the POR:CYP19A1 interaction. Mutations C569Y and V608F in the NADPH binding domain of POR had 49 and 28% of activity of CYP19A1 compared with normal reductase and were more sensitive to the amount of NADPH available for supporting CYP19A1 activity. Substitution of NADH for NADPH had a higher impact on C569Y and V608F mutants of POR. Similar effects were obtained at low/high (5.5/8.5) pH, but using octanol to limit the flux of electrons from POR to CYP19A1 inhibited activity supported by all variants. High molar ratios of KCl also reduced the CYP19A1 supporting activities of C569Y and V608F mutants of POR to a greater extent compared to normal POR and A287P mutant. Because POR supports many P450s involved in steroidogenesis, bone formation, and drug metabolism, variations in the effects of POR mutations on specific enzyme activities may explain the broad clinical spectrum of POR deficiency.
Resumo:
The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of "Shield-1" prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A94 since the CYP activity was significantly enhanced with co-expressed POR.
Resumo:
Background: NADPH-cytochrome- P450 oxidoreductase (CPR) is a ubiquitous enzyme that belongs to a family of diflavin oxidoreductases and is required for activity of the microsomal cytochrome-P450 monooxygenase system. CPR gene-disruption experiments have demonstrated that absence of this enzyme causes developmental defects both in mouse and insect. Results: Annotation of the sequenced genome of D. discoideum revealed the presence of three genes (redA, redB and redC) that encode putative members of the diflavin oxidoreductase protein family. redA transcripts are present during growth and early development but then decline, reaching undetectable levels after the mound stage. redB transcripts are present in the same levels during growth and development while redC expression was detected only in vegetative growing cells. We isolated a mutant strain of Dictyostelium discoideum following restriction enzyme-mediated integration (REMI) mutagenesis in which redA was disrupted. This mutant develops only to the mound stage and accumulates a bright yellow pigment. The mound-arrest phenotype is cell-autonomous suggesting that the defect occurs within the cells rather than in intercellular signaling. Conclusion: The developmental arrest due to disruption of redA implicates CPR in the metabolism of compounds that control cell differentiation.
Resumo:
Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.
Resumo:
Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.
Resumo:
P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.
Resumo:
The diflavo-protein NADPH cytochrome P450 reductase (CPR) is the key electron transfer partner for all drug metabolizing cytochrome P450 enzymes in humans. The protein delivers, consecutively, two electrons to the heme active site of the P450 in a carefully orchestrated process which ultimately leads to the generation of a high valent oxo-heme moiety. Despite its central role in P450 function, no direct electrochemical investigation of the purified protein has been reported. Here we report the first voltammetric study of purified human CPR where responses from both the FMN and FAD cofactors have been identified using both cyclic and square wave voltammetry. For human CPR redox responses at -2 and -278 mV (with a ratio of 1e(-):3e(-)) vs NHE were seen at pH 7.9 while the potentials for rat CPR at pH 8.0 were -20 and -254 mV. All redox responses exhibit a pH dependence of approximately -59 mV/pH unit consistent with proton coupled electron transfer reactions of equal stoichiometry. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Deficiency of the enzyme P450 oxidoreductase is a rare form of congenital adrenal hyperplasia with characteristics of combined and partial impairments in steroidogenic enzyme activities, as P450 oxidoreductase transfers electrons to CYP21A2, CYP17A1, and CYP19A1. It results in disorders of sex development and skeletal malformations similar to Antley-Bixley syndrome. We report the case of a 9-year-old girl who was born with virilized genitalia (Prader stage V), absence of palpable gonads, 46,XX karyotype, and hypergonadotropic hypogonadism. During the first year of life, ovarian cyst, partial adrenal insufficiency, and osteoarticular changes, such as mild craniosynostosis, carpal and tarsal synostosis, and limited forearm pronosupination were observed. Her mother presented severe virilization during pregnancy. The molecular analysis of P450 oxidoreductase gene revealed compound heterozygosis for the nonsense p.Arg223*, and the novel missense p.Met408Lys, inherited from the father and the mother, respectively. Arq Bras Endocrinol Metab. 2012;56(8):578-85
Resumo:
Context: 21-hydroxylase deficiency (21OHD) is a common genetic disorder caused by mutations in the CYP21A2 gene, which encodes the adrenal 21-hydroxylase, microsomal P450c21. CYP21A2 gene mutations generally correlate well with impaired P450c21 enzymatic activity and the clinical findings in 21OHD, but occasional discrepancies between genotype and phenotype suggest the effects of modifier genes. Mutations in P450 oxidoreductase (POR), the protein that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate to all microsomal P450s, can ameliorate the 21OHD phenotype and, therefore, could be a modifier gene. Objectives: We sought to identify POR variants in patients with 21OHD having discordant phenotype and genotype, and to evaluate their effect on 21-hydroxylase activity. Patients and Methods: We determined the CYP21A2 genotypes of 313 Brazilian patients with 21OHD and correlated the genotype and phenotype. The POR gene was sequenced in 17 patients with discordant genotype and phenotype. Wild-type and A503V POR, and P450c21 were expressed in bacteria and reconstituted in vitro. Activities were assayed by conversion of [C-14] progesterone to deoxycorticosterone and [H-3]17-hydroxyprogesterone to 11-deoxycortisol, and assessed by thin layer chromatography and phosphorimaging. Results: The A503V POR variant was found in 10 of 30 alleles, the same ratio as in the normal population. There were no significant differences in Michaelis constant, maximum velocity and maximum velocity/Michaelis constant of 21-hydroxylase activity supported by wild-type and A503V POR. Conclusion: The only POR missense polymorphism found in atypical 21OHD patients was A503V. Although A503V reduces P450c17 enzymatic activity, it does not influence P450c21 activity, indicating that POR A503V does not modify the 21OHD phenotype.