137 resultados para Myotis nattereri


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed characterizations of the karyotypes of the Brazilian leptodactylid frogs Pleurodema diplolistris, the only species of Pleurodema not studied cytogenetically so far, and Physalaemus nattereri, a species in the Ph. biligonigerus group, are presented. Both karyotypes had 2n = 22 and their chromosomes had a very similar morphology, except for pair 11, which was metacentric in Pl. diplolistris and telocentric in Ph. nattereri. The localization of nucleolar organizer regions (NORs) and heterochromatic bands allowed the differentiation of chromosomes that were morphologically indistinguishable between these species, such as pairs 1, 3 and 10, which showed interstitial C-bands in Ph. nattereri, and pair 8, that had an NOR and an adjacent C-band in Pl. diplolistris. Pair 8 also has NOR-bearing chromosomes in many other Pleurodema species. However, in these species, the NOR is located proximal to the centromere on the short arm, while in Pl. diplolistris it occurred distally on the long arm, a condition that may be considered a derived state. In Ph. nattereri, the NOR occurred on chromosome I 1 and differed from the other species of the Ph. biligonigerus group. In contrast, C-banding revealed a heterochromatic block near the centromere on the short arm of pair 3, a characteristic common to all members of this group of Physalaemus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amphibians have melanin-containing cells in visceral organs that are similar to pigmentary cells from the epidermis. Both of them are derived from the ectodermal neural crest. Epidermal cells respond to α-melanocyte stimulating hormone (α-MSH), which is associated to the dispersion of melanin granules within melanocytes. Therefore, our aim was to test whether a non-degradable analogue of the α-MSH changes the superficial colouration of organs of Eupemphix nattereri. The hormone rapidly increases (within 12 hours) the colouration on the surface of the pericardium, heart, testes, nerves of the lumbar plexus, and lumbosacral parietal peritoneum. Colouration increased late (after 24 hours) in the kidneys and mesentery following hormone administration. However, this hormone did not change colouration of intestine, rectum and lungs. Our findings could be explained by the similarities between epidermal and visceral melanocytes, since both cells have a common embryonic origin. Furthermore, the increase in visceral colouration may be related to the dispersion of melanosomes within melanocytes, which causes the darkening of organs. Our results demonstrate for the first time that the visceral colouration is responsive, thereby altering the internal pattern of organs' colouration in anurans. © 2013 Copyright 2013 Unione Zoologica Italiana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotis nigricans is an endemic species of vespertilionid bat, from the Neotropical region, that resembles temperate zone bats in their reproductive cycle; presenting an annual reproductive cycle with two periods of testicular regression, which are not linked to the apoptotic process and seems to be not directly linked to any seasonal abiotic variation. Thus, this study aimed to ultrastructurally evaluate their reproductive cycle. The process of testicular regression could be divided into four periods: active; regressing; regressed and recrudescence; with all presenting distinct characteristics. The active period was similar to that of other bats, presenting the complete occurrence of spermatogenesis, with three main types of spermatogonia (Ad, Ap, and B) and 12 steps in spermatid differentiation; however, it differed in having the outer dense fibers 1, 5, 6, and 9 larger than the others. These three types of spermatogonia undergo considerable morphologic changes from regressing to the regressed period, and in the recrudescence, they return to the basic morphology, which reactivates spermatogenesis. In conclusion, our study described the process of spermatogenesis, the ultrastructure of the spermatozoa and the distinct morphologic variations in the ultrastructure of the testicular cells of M. nigricans during the four different periods of its annual reproductive cycle. Microsc. Res. Tech., 76:1035-1049, 2013. © 2013 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Melanocytes are found in various organs of ectothermic animals, playing a protective role against bacteria and free radicals. It is known that pigment cells from hematopoietic organs have immune functions. However, the role of visceral melanocytes is not well understood. Cutaneous melanocytes are responsive to α-melanocyte stimulating hormone (α-MSH), which is associated with the dispersion of melanin granules within melanocytes. α-MSH has also been reported to inhibit most forms of inflammatory responses by decreasing the pro-inflammatory cytokines and neutrophil migration. The present study evaluated the influence of an α-MSH analog (Nle4, D-Phe7-α-MSH) and lipopolysaccharides (LPS) from Escherichia coli on the liver and testicular tissues of the anuran Eupemphix nattereri. The tested hypotheses were: (i) the pigmented area will increase following hormone and LPS administration, (ii) pre-treatment with α-MSH will decrease the number of mast cells, and (iii) the hormone will have protective effects against LPS-induced responses. We found that hormone administration did not change hepatic pigmentation, but increased testicular pigmentation. Testicular pigmentation quickly increased after LPS administration, whereas there was a late response in the liver. The response of enhanced pigmentation was delayed and the number of mast cells decreased in animals previously treated with the α-MSH analog when compared to the LPS group. Hemosiderin and lipofuscin were found in melanomacrophages, but not in testicular melanocytes. Although both the liver and the testes of E. nattereri have pigmented cells, these are distinct in morphology, embryonic origin, and pigmentary substances. These differences may be responsible for the different responses of these cells to the α-MSH analog and LPS administration. © 2013 Elsevier GmbH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)