98 resultados para Myotis mystacinus


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Geoffroy’s bat Myotis emarginatus is mainly present in southern, south-eastern and central Europe (Červerný, 1999) and is often recorded from northern Spain (Quetglas, 2002; Flaquer et al., 2004). It has demonstrated the species’ preference for forest. Myotis capaccinii, confined to the Mediterranean (Guille´n, 1999), is classified as ‘vulnerable’ on a global scale (Hutson, Mickleburgh & Racey, 2001). In general, the species preferred calm waters bordered by well-developed riparian vegetation and large (> 5 m) inter-bank distances (Biscardi et al. 2007). In this study we present the first results about population genetic structure of these two species of genus Myotis. We used two methods of sampling: invasive and non-invasive techniques. A total of 323 invasive samples and a total of 107 non-invasive samples were collected and analyzed. For Myotis emarginatus we have individuated for the first time a set of 7 microsatellites, which can work on this species, started from a set developed on Myotis myotis (Castella et al. 2000). We developed also a method for analysis of non-invasive samples, that given a good percentage of positive analyzed samples. The results have highlighted for the species Myotis emarginatus the presence on the European territory of two big groups, discovered by using the microsatellites tracers. On this species, 33 haplotypes of Dloop have been identified, some of them are presented only in some colonies. We identified respectively 33 haplotypes of Dloop and 10 of cytB for Myotis emarginatus and 25 of dloop and 15 of cytB for Myotis capaccinii. Myotis emarginatus’ results, both microsatellites and mtDNA, show that there is a strong genetic flow between different colonies across Europe. The results achieved on Myotis capaccinii are very interesting, in this case either for the microsatellites or the mitochondrial DNA sequences, and it has been highlighted a big difference between different colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White-nose syndrome (WNS) is an emerging infectious disease of hibernating bats linked to the death of an estimated 5.7 million or more bats in the northeastern United States and Canada. White-nose syndrome is caused by the cold-loving fungus Pseudogymnoascus destructans (Pd), which invades the skin of the muzzles, ears, and wings of hibernating bats. Previous work has shown that WNS-affected bats arouse to euthermic or near euthermic temperatures during hibernation significantly more frequently than normal and that these too-frequent arousals are tied to severity of infection and death date. We quantified the behavior of bats during these arousal bouts to understand better the causes and consequences of these arousals. We hypothesized that WNS-affected bats would display increased levels of activity (especially grooming) during their arousal bouts from hibernation compared to WNS-unaffected bats. Behavior of both affected and unaffected hibernating bats in captivity was monitored from December 2010 to March 2011 using temperature-sensitive dataloggers attached to the backs of bats and infrared motion-sensitive cameras. The WNS-affected bats exhibited significantly higher rates of grooming, relative to unaffected bats, at the expense of time that would otherwise be spent inactive. Increased self-grooming may be related to the presence of the fungus. Elevated activity levels in affected bats likely increase energetic stress, whereas the loss of rest (inactive periods when aroused from torpor) may jeopardize the ability of a bat to reestablish homeostasis in a number of physiologic systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this project was to determine the relationship between hibernacula microclimate and White-nose Syndrome (WNS), an emerging infectious disease in bats. Microclimate was examined on a species scale and at the level of the individual bat to determine if there was a difference in microclimate preference between healthy and WNS-affected little brown myotis (Myotis lucifugus) and to determine the role of microclimate in disease progression. There is anecdotal evidence that colder, drier hibernacula are less affected by WNS. This was tested by placing rugged temperature and humidity dataloggers in field sites throughout the eastern USA, experimentally determining the response to microclimate differences in captive bats, and testing microclimate roosting preference. This study found that microclimate significantly differed from the entrance of a hibernaculum versus where bats traditionally roost. It also found hibernaculum temperature and sex had significant impacts on survival in WNS-affected bats. Male bats with WNS had increased survivability over WNS-affected female bats and WNS bats housed below the ideal growth range of the fungus that causes WNS, Geomyces destructans, had increased survival over those housed at warmer temperatures. The results from this study are immediately applicable to (1) predict which hibernacula are more likely to be infected next winter, (2) further our understanding of WNS, and (3) determine if direct mitigation strategies, such as altering the microclimate of mines, will be effective ways to combat the spread of the fungus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Female greater wax moths Galleria mellonella display by wing fanning in response to bursts of ultrasonic calls produced by males. The temporal and spectral characteristics of these calls show some similarities with the echolocation calls of bats that emit frequency-modulated (FM) signals. Female G. mellonella therefore need to distinguish between the attractive signals of male conspecifics, which may lead to mating opportunities, and similar sounds made by predatory bats. We therefore predicted that (1) females would display in response to playbacks of male calls; (2) females would not display in response to playbacks of the calls of echolocating bats (we used the calls of Daubenton's bat Myotis daubentonii as representative of a typical FM echolocating bat); and (3) when presented with male calls and bat calls during the same time block, females would display more when perceived predation risk was lower. We manipulated predation risk in two ways. First, we varied the intensity of bat calls to represent a nearby (high risk) or distant (low risk) bat. Second, we played back calls of bats searching for prey (low risk) and attacking prey (high risk). All predictions were supported, suggesting that female G. mellonella are able to distinguish conspecific male mating calls from bat calls, and that they modify display rate in relation to predation risk. The mechanism (s) by which the moths separate the calls of bat and moth must involve temporal cues. Bat and moth signals differ considerably in duration, and differences in duration could be encoded by the moth's nervous system and used in discrimination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several insectivorous bats have included fish in their diet, yet little is known about the processes underlying this trophic shift. We performed three field experiments with wild fishing bats to address how they manage to discern fish from insects and adapt their hunting technique to capture fish. We show that bats react only to targets protruding above the water and discern fish from insects based on prey disappearance patterns. Stationary fish trigger short and shallow dips and a terminal echolocation pattern with an important component of the narrowband and low frequency calls. When the fish disappears during the attack process, bats regulate their attack increasing the number of broadband and high frequency calls in the last phase of the echolocation as well as by lengthening and deepening their dips. These adjustments may allow bats to obtain more valuable sensorial information and to perform dips adjusted to the level of uncertainty on the location of the submerged prey. The observed ultrafast regulation may be essential for enabling fishing to become cost-effective in bats, and demonstrates the ability of bats to rapidly modify and synchronise their sensorial and motor features as a response to last minute stimulus variations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phylogenetic relationships among 15 species of wood mice (genus Apodemus) were reconstructed to explore some long-standing taxonomic problems. The results provided support for the monophyly of the genus Apodemus, but could not reject the hypothesis of paraphyly for this genus. Our data divided the 15 species into four major groups: (1) the Sylvaemus group (A. sylvaticus, A. flavicollis, A. alpicola, and A. uralensis), (2) the Apodemus group (A. peninsulae, A. chevreri, A. agrarius, A. speciosus, A. draco, A. ilex, A. semotus, A. latronum, and A. mystacinus), (3) A. argenteus, and (4) A. gurkha. Our results also suggested that orestes should be a valid subspecies of A. draco rather than an independent species; in contrast, A. ilex from Yunnan may be regarded as a separate species rather than a synonym of orestes or draco. The species level status of A. latronum, tscherga as synonyms of A. uralensis, and A. chevrieri as a valid species and the closest sibling species of A. agrarius were further corroborated by our data. Applying a molecular clock with the divergences of Mus and Rattus set at 12 million years ago (Mya) as a calibration point, it was estimated that five old lineages (A. mystacinus and four major groups above) diverged in the late Miocene (7.82-12.74 Mya). Then the Apodemus group (excluding A. mystacinus) split into two subgroups: agrarius and draco, at about 7.17-9.95 Mya. Four species of the Sylvaemus group were estimated to diverge at about 2.92-5.21 Mya. The Hengduan Mountains Region was hypothesized to have played important roles in Apodemus evolutionary histories since the Pleistocene. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

水鼠耳蝠Myotis daubentonii(Chiroptera,Vespertilionidae),广泛分布于欧洲和亚洲,亚种分化众多,在亚洲已报道有M.d.ussuriensis,M.d.loukashkini,M.d.petax和M.d.laniger等,但其分类地位一直受到国内外学者的关注。中国的水鼠耳蝠长期以来被认为属于水鼠耳蝠M.daubentonii亚种。最近有研究认为中国的水鼠耳蝠与欧洲的水鼠耳蝠M.daubentonii不同,并把"petax"提升为种。在中国境内相继采到17只鼠耳蝠标本,根据外形、头骨、牙齿、阴茎骨、线粒体DNA细胞色素b等特征,鉴定为东亚水鼠耳蝠Myotis petax,对中国水鼠耳蝠的种和亚种分类做一讨论。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage. RESULTS: We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats Pteropus vampyrus and Myotis lucifugus. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in P. vampyrus, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli. CONCLUSION: The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines those features which promote bat feeding in agricultural riparian areas and the riparian habitat associations of individual species. Activity of Nathusius' pipistrelle (Pipistrellus nathusii), common pipistrelle (Pipistrellus pipistrellus), soprano pipistrelle (Pipistrellus pygmaeus), Leisler's bat (Nyctalus leisleri), and Myotis species (Myotis sp.) were recorded, and their habitat associations both "between" and "within" riparian areas were analyzed. General feeding activity was associated with reduced agricultural intensity, riparian hedgerow provision, and habitat diversity. Significant habitat associations for P. pipistrellus were observed only within riparian areas. Myotis species and P. pygmaeus were significantly related to indices of landscape structure and riparian hedgerow across spatial scales. Myotis species were also related to lower levels of riffle flow at both scales of analysis. The importance of these variables changed significantly, however, between analysis scales. The multi-scale investigation of species-habitat associations demonstrated the necessity to consider habitat and landscape characteristics across spatial scales to derive appropriate conservation plans.