974 resultados para Mycobacterium intracellulare
Resumo:
Tuberculosis has emerged as a major concern in patients with immuno-mediated diseases, including psoriasis, undergoing treatment with biologicals. However, it is not known whether the chronically activated immune system of psoriasis patients interferes with their Mycobacterium tuberculosis (Mtb)-specific immunity, especially in tuberculosis-endemic areas like Brazil. We evaluated T-cell responses to a Mtb lysate and to the recombinant Mtb proteins ESAT-6 and Ag85B of tuberculin skin test (TST) positive and TST negative patients with severe or mild/moderate, untreated psoriasis in three different assays: lymphocyte proliferation, enzyme immunoassay for interferon (IFN)-gamma and interleukin (IL)-10 production by peripheral blood mononuclear cells and overnight enzyme immunospot (ELISpot) for enumerating IFN-gamma-secreting cells. In our cohort, a low proportion (29%) of the severe psoriasis patients tested were TST-positive. IFN-gamma and IL-10 secretion and T-cell proliferation to Mtb antigens were reduced in TST-negative but not in TST-positive patients with severe psoriasis when compared to healthy controls with the same TST status. Similarly, severe psoriasis patients had decreased cytokine secretion and proliferative response to phytohemagglutinin. However, most psoriasis patients and healthy controls showed detectable numbers of IFN-gamma-secreting effector-memory T-cells in response to Mtb antigens by ELISpot. TST-negative, mild/moderate psoriasis patients had responses that were mostly intermediary between TST-negative controls and severe psoriasis patients. Thus, patients with severe psoriasis possess decreased anti-Mtb central memory T-cell responses, which may lead to false-negative results in the diagnosis of TB infection, but retain T-cell memory-effector activity against Mtb antigens. We hypothesize that the latter may confer some protection against tuberculosis reactivation.
Resumo:
Objective: To analyse and compare the expression of Palate, Lung, and Nasal Epithelium Clone (PLUNC) proteins in salivary glands from patients with and without AIDS (control group) using autopsy material. Methods: We analysed the expression of PLUNCs using immunohistochemistry in parotid (n = 45), submandibular (n = 47) and sublingual gland (n = 37) samples of AIDS patients [30 with normal histology, 21 with mycobacteriosis, 14 with cytomegalovirus (CMV) infection, 30 with chronic non-specific sialadenitis, and 30 HIV-negative controls. In situ hybridization (ISH) for SPLUNC 2 in the HIV-negative group was performed. Results: SPLUNC 1 expression was detected in the mucous acini of submandibular and sublingual glands, and SPLUNC 2 were seen in the serous cells. LPLUNC 1 expression was only positive in the salivary ducts. There was a higher expression of SPLUNC 2 in AIDS patients with CMV infection and mycobacteriosis when compared with all other groups. The intensity of staining for SPLUNC 2 was greater around the lesions than the peripheral ones. ISH for SPLUNC 2 showed perinuclear positivity in the serous cells in all HIV-negative cases. Conclusions: SPLUNC 1 and LPLUNC 1 proteins were similarly expressed in the salivary glands of AIDS patients and non-HIV patients. CMV infection and mycobacteriosis increase SPLUNC 2 expression in serous cells in the salivary gland of AIDS patients.
Resumo:
Leprosy is a curable chronic granulomatous infectious disease caused by the bacillus Mycobacterium leprae. This organism has a high affinity for skin and peripheral nerve cells. In the evolution of infections, the immune status of patients determines the disease expression. Dendritic cells are antigen-presenting cells that phagocytose particles and microorganisms. In skin, dendritic cells are represented by epidermal Langerhans cells and dermal dendrocytes, which can be identified by expression of CD1a and factor XIIIa (FXIIIa). In the present study, 29 skin samples from patients with tuberculoid (13 biopsies) and lepromatous (16 biopsies) leprosy were analyzed by immunohistochemistry using antibodies to CD1a and FXIIIa. Quantitative analysis of labeling pattern showed a clear predominance of dendritic cells in tuberculoid leprosy. Difference between the number of positive cells of immunohistochemistry for the CD1a and FXIIIa staining observed in this study indicates a role for dendritic cells in the cutaneous response to leprosy. Dendritic cells may be a determinant of the course and clinical expression of the disease.
Resumo:
Objectives Tuberculosis (TB) remains an important disease associated with HIV infection and AIDS in Brazil, even in a setting of free access to antiretroviral therapy (ART) and TB treatment. In previous studies, isoniazid therapy (IT) for latent infection with Mycobacterium tuberculosis (LIMTb) was found to reduce the risk of TB by 62% in patients with a tuberculin test (TT)> 5 mm. The objectives of this study were to investigate the occurrence of TB, the prevalence of LIMTb and the coverage of the TT and IT, and to estimate the number of missed opportunities to prevent TB in patients with HIV/AIDS. Methods A random sample of patients with HIV/AIDS was selected; data from the medical files were obtained, and a TT was performed in consenting subjects. Results In the 203 subjects included in the study, TB occurrence was 13.3%, LIMTb prevalence was 20% and the coverage of the TT and IT was 59.2 and 55%, respectively. Patients with TB had a lower nadir CD4 cell count, but their CD4 recovery was comparable to that of non-TB patients. Patients with LIMTb always had a higher CD4 cell count. Conclusions By expanding the coverage of the TT and IT to nearly 100%, we could more than double the number of prevented cases of TB. TB prevention programmes must be reinforced to reduce the number of missed opportunities for diagnosis, and IT must be improved to reduce TB among patients with HIV/AIDS. Empowering patients with knowledge about TB, the preventive role of IT and the need for an annual TT may be the best way of lowing rates of TB in patients with HIV/AIDS.
Resumo:
Transgenic plants are able to express molecules with antigenic properties. In recent years, this has led the pharmaceutical industry to use plants as alternative systems for the production of recombinant proteins. Plant-produced recominant proteins can have important applications in therapeutics, such as in the treatment of rheumatoid arthritis (RA). In this study, the mycobacterial HSP65 protein expressed in tobacco plants was found to be effective as a treatment for adjuvant-induced arthritis (AIA). We cloned the hsp65 gene from Mycobacterium leprae into plasmid pCAMBIA 2301 under the control of the double 35S promoter from cauliflower mosaic virus. Agrobacterium tumefaciens bearing the pChsp65 plasmid was used to transform tobacco plants. Incorporation of the hsp65 gene was confirmed by PCR, reverse transcription-PCR, histochemistry, and western blot analyses in several transgenic lines of tobacco plants. Oral treatment of AIA rats with the HSP65 protein allowed them to recover body weight and joint inflammation was reduced. Our results suggest a synergistic effect between the HSP65 expressed protein and metabolites presents in tobacco plants.
Resumo:
Culture filtrate proteins (CFP) are potential targets for tuberculosis vaccine development. We previously showed that despite the high level of gamma interferon (IFN-gamma) production elicited by homologous immunization with CFP plus CpG oligodeoxynucleotides (CFP/CpG), we did not observe protection when these mice were challenged with Mycobacterium tuberculosis. In order to use the IFN-gamma-inducing ability of CFP antigens, in this study we evaluated a prime-boost heterologous immunization based on CFP/CpG to boost Mycobacterium bovis BCG vaccination in order to find an immunization schedule that could induce protection. Heterologous BCG-CFP/CpG immunization provided significant protection against experimental tuberculosis, and this protection was sustained during the late phase of infection and was even better than that conferred by a single BCG immunization. The protection was associated with high levels of antigen-specific IFN-gamma and interleukin-17 (IL-17) and low IL-4 production. The deleterious role of IL-4 was confirmed when IL-4 knockout mice vaccinated with CFP/CpG showed consistent protection similar to that elicited by BCG-CFP/CpG heterologous immunization. These findings show that a single dose of CFP/CpG can represent a new strategy to boost the protection conferred by BCG vaccination. Moreover, different immunological parameters, such as IFN-gamma and IL-17 and tightly regulated IL-4 secretion, seem to contribute to the efficacy of this tuberculosis vaccine.
Resumo:
Background: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime-boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime-boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.
Resumo:
Using two mouse strains with different abilities to generate interferon (IFN)-gamma production after Mycobacterium tuberculosis infection, we tested the hypothesis that the frequency and activity of regulatory T (Treg) cells are influenced by genetic background. Our results demonstrated that the suppressive activity of spleen Treg cells from infected or uninfected BALB/c mice was enhanced, inhibiting IFN-gamma and interleukin (IL)-2 production. Infected C57BL/6 mice exhibited a decrease in the frequency of lung Treg cells and an increased ratio CD4(+):CD4(+)Foxp3(+) cells compared with infected BALB/c mice and uninfected C57BL/6 mice. Moreover, infected C57BL/6 mice also had a decrease in the immunosuppressive capacity of spleen Treg cells, higher lung IFN-gamma and IL-17 production, and restricted the infection better than BALB/c mice. Adoptive transfer of BALB/c Treg cells into BALB/c mice induced an increase in bacterial colony-forming unit (CFU) counts. Furthermore, BALB/c mice treated with anti-CD25 antibody exhibited lung CFU counts significantly lower than mice treated with irrelevant antibody. Our results show that in BALB/c mice, the Treg cells have a stronger influence than that in C57BL/6 mice. These data suggest that BALB/c and C57BL/6 mice may use some different mechanisms to control M. tuberculosis infection. Therefore, the role of Treg cells should be explored during the development of immune modulators, both from the perspective of the pathogen and the host. Immunology and Cell Biology (2011) 89, 526-534; doi:10.1038/icb.2010.116; published online 19 October 2010
Resumo:
Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules, These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.
Resumo:
We have identified a globally important clonal complex of Mycobacterium bovis by deletion analysis of over one thousand strains from over 30 countries. We initially show that over 99% of the strains of M. bovis, the cause of bovine tuberculosis, isolated from cattle in the Republic of Ireland and the UK are closely related and are members of a single clonal complex marked by the deletion of chromosomal region RDEu1 and we named this clonal complex European 1 (Eu1). Eu1 strains were present at less than 14% of French, Portuguese and Spanish isolates of M. bovis but are rare in other mainland European countries and Iran. However, strains of the Eu1 clonal complex were found at high frequency in former trading partners of the UK (USA, South Africa, New Zealand, Australia and Canada). The Americas, with the exception of Brazil, are dominated by the Eu1 clonal complex which was at high frequency in Argentina, Chile, Ecuador and Mexico as well as North America. Eu1 was rare or absent in the African countries surveyed except South Africa. A small sample of strains from Taiwan were non-Eu1 but, surprisingly, isolates from Korea and Kazakhstan were members of the Eu1 clonal complex. The simplest explanation for much of the current distribution of the Eu1 clonal complex is that it was spread in infected cattle, such as Herefords, from the UK to former trading partners, although there is evidence of secondary dispersion since. This is the first identification of a globally dispersed clonal complex M. bovis and indicates that much of the current global distribution of this important veterinary pathogen has resulted from relatively recent International trade in cattle. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.
Resumo:
Background The continued increase in tuberculosis (TB) rates and the appearance of extremely resistant Mycobacterium tuberculosis strains (XDR-TB) worldwide are some of the great problems of public health. In this context, DNA immunotherapy has been proposed as an effective alternative that could circumvent the limitations of conventional drugs. Nonetheless, the molecular events underlying these therapeutic effects are poorly understood. Methods We characterized the transcriptional signature of lungs from mice infected with M. tuberculosis and treated with heat shock protein 65 as a genetic vaccine (DNAhsp65) combining microarray and real-time polymerase chain reaction analysis. The gene expression data were correlated with the histopathological analysis of lungs. Results The differential modulation of a high number of genes allowed us to distinguish DNAhsp65-treated from nontreated animals (saline and vector-injected mice). Functional analysis of this group of genes suggests that DNAhsp65 therapy could not only boost the T helper (Th)1 immune response, but also could inhibit Th2 cytokines and regulate the intensity of inflammation through fine tuning of gene expression of various genes, including those of interleukin-17, lymphotoxin A, tumour necrosis factor-cl, interleukin-6, transforming growth factor-beta, inducible nitric oxide synthase and Foxp3. In addition, a large number of genes and expressed sequence tags previously unrelated to DNA-therapy were identified. All these findings were well correlated with the histopathological lesions presented in the lungs. Conclusions The effects of DNA therapy are reflected in gene expression modulation; therefore, the genes identified as differentially expressed could be considered as transcriptional biomarkers of DNAhsp65 immunotherapy against TB. The data have important implications for achieving a better understanding of gene-based therapies. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A resistência a fármacos antituberculose tem constituído uma grande ameaça ao controle da tuberculose em âmbito mundial. A sua detecção precoce permite ao médico instituir um esquema de tratamento mais adequado ao paciente e consequentemente quebrar a cadeia de transmissão dos bacilos. Os testes de sensibilidade a antimicrobianos atuais, embora eficientes, são caros e/ou demorados e/ou trabalhosos. Com base nesta premissa, nos propusemos a desenvolver e padronizar um método fenotípico direto para determinação da sensibilidade do Mycobacterium tuberculosis a antimicrobianos de primeira linha do tratamento da tuberculose. Para o desenvolvimento deste novo teste, utilizaram-se os princípios do método das proporções e do exame de cultura pelo método de Ogawa–Kudoh. O estudo foi dividido em duas fases. A primeira, caracterizada pelo desenvolvimento e padronização do método proposto e a segunda, pela análise da concordância entre o método desenvolvido e o método do MGIT (padrão-ouro). Na primeira fase, foram realizados diversos ensaios para definir: os volumes de absorção e de liberação de líquidos de diferentes tipos de swab, o meio de cultura, as concentrações dos antimicrobianos e o tempo de leitura/interpretação das culturas. Além disso, foi verificado se a amostra deveria ou não ser diluída. Com base nos resultados destes ensaios, padronizou-se o método com: swab comercial, em meio de cultura Ogawa- Kudoh contendo separadamente 0,2 μg/mL de isoniazida, 40,0 μg/mL de rifampicina, 10,0 μg/mL de estreptomicina e 500,0 μg/mL de ácido para-nitrobenzóico. Padronizou-se ainda a inoculação da amostra de escarro de forma direta, ou seja, sem diluir e a leitura/interpretação do resultado do teste no período entre 21 e 28 dias. A análise comparativa entre este método e o teste de sensibilidade a antimicrobianos no sistema MGIT realizada na segunda fase do projeto indicou um índice kappa igual a 1,000, ou seja, uma concordância muito boa em relação ao padrão-ouro. Diante desses resultados promissores, acreditamos que o método desenvolvido apresente um grande potencial para ser utilizado em laboratórios com pouca infra-estrutura, por ser de baixo custo, fácil execução e relativamente rápido.
Resumo:
Introdução: Os ensaios de liberação do interferon- γ (ELIG) surgiram como uma alternativa para o diagnóstico de infecção latente pelo Mycobacterium tuberculosis (ILTB). Neste estudo, nós comparamos o desempenho de um dos ELIG, teste Quantiferon TB Gold in tube – QFT, com a prova tuberculínica (PT) em dois pontos de corte (≥ 5 mm e ≥ 10 mm), em profissionais de saúde da atenção básica à saúde (ABS). Métodos: Estudo transversal realizado em profissionais de saúde da ABS de quatro capitais nacionais com alta incidência de TB. O resultado do teste QFT foi comparado com o resultado da PT nos pontos de corte ≥ 5mm e ≥ 10 mm. Resultados: Foram incluídos 632 profissionais de saúde. Ao considerar o ponto de corte ≥ 10 mm para a PT, a concordância entre QFT e a PT foi de 69% (k = 0,31) e para o ponto de corte ≥ 5 mm, a concordância entre os testes foi de 57% (k = 0,22). Devido a baixa concordância entre a PT e o QFT, nós avaliamos os possíveis fatores associados com a discordância entre eles. Ao comparar o grupo PT- / QFT- com o grupo PT+ / QFT-, no ponto de corte ≥ 5 mm, a idade entre 41-45 [OR = 2,70, IC 95%: 1,32-5,51] e 46-64 [OR = 2,04, IC 95%: 1,05-3,93], presença de cicatriz vacinal do BCG [OR = 2,72, IC 95%: 1,40-5,25] e trabalhar apenas na ABS [OR = 2,30, IC 95 %: 1,09-4,86] apresentaram associação estatística significativa. Para o ponto de corte ≥ 10 mm, a presença de cicatriz vacinal do BCG [OR = 2,26, IC 95%: 1,03-4,91], ter tido contato domiciliar com paciente portador de tuberculose ativa [OR = 1,72, IC 95%: 1,01-2,92] e ter feito a PT anteriormente [OR = 1,66, IC 95%: 1,05-2,62] revelaram associação estatística significativa. Curiosamente, a discordância observada no grupo PT- / QFT + não apresentou associação estatistica com nenhuma das variáveis consideradas, independentemente do ponto de corte da PT. Conclusões: Apesar de termos identificado que a vacina BCG contribuiu para a discordância entre os testes, as recomendações brasileiras para o início do tratamento da ILTB não devem ser alteradas devido as limitações do QFT.
Resumo:
A parede celular de Mycobacterium tuberculosis (Mtb) é constituída por 60% de lipídios, impedindo a passagem de uma grande quantidade de substâncias, além de desempenhar um importante papel na imunopatogênese. A apresentação desses antígenos aos linfócitos se dá por meio de moléculas do tipo CD1.Por sua vez a Apolipoproteína-E (ApoE), glicoproteína amplamente distribuída nos tecidos, pode facilitar a apresentação de lipídios pelo CD1. A ApoE possui três principais alelos ApoE- 2, 3 e 4, que codificam três isoformas de proteínas, tipos 2, 3 e 4, que possuem diferentes estruturas e funções. A presença de determinadas isoformas da ApoE está associada a doenças infecciosas, como herpes labial, dano hepático severo causado pelo vírus da hepatite C, diarréia infantil e tuberculose pulmonar. Neste contexto, avaliamos a participação da ApoE na atividade microbicida in vitro frente ao Mtb. Para tanto, foram arrolados 13 indivíduos PPD-, 17 indivíduos PPD+ e 4 indivíduos com tuberculose pulmonar ativa. O uso de plasma humano depletado de ApoE nos experimentos de atividade microbicida in vitro mostraram um aumento significante (p=0,02) no número de micobactérias (431.5 ± 81.92 UFC) quando comparado ao grupo controle (313.0 ± 74.61 UFC). Esses resultados foram confirmados por um modelo experimental utilizando esplenócitos de camundongos de camundongos C57BL/6 (815.9 ± 76.32 UFC) e animais APOE nocaute (1133 ± 86.85 UFC) (p = 0.021). Quanto à produção de IL-10, no grupo PPD+, observamos que o grupo com depleção de ApoE (866.7 ± 447.8) apresentou uma produção menor desta citocina com relação ao controle infectado (1089 ± 481.3) (p=0,023). Já em relação ao IFN-, em ambos os grupos observou-se, após 72 horas, uma tendência à diminuição da produção dessa citocina no grupo com depleção, com relação ao grupo controle. Esses dados sugerem que a ApoE tem papel distinto na ativação da resposta imune e sua ausência pode prejudicar a resposta imune frente à tuberculose
Resumo:
Foi feita revisão histórica sobre os corantes utilizados na identificação do Mycobacterium leprae. Foram analisadas para cada corante, sua composição química, propriedades tintoriais e a capacidade de assimilação pelo bacilo nas diversas técnicas de coloração.