969 resultados para Mutation analysis


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background. Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH) 1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods. Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine-phosphate-guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results. Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine-phosphate-guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions. Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation-specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To test the hypothesis that mitochondrial DNA (mtDNA) variants contribute to the susceptibility to schizophrenia, we sequenced the entire mtDNAs from 93 Japanese schizophrenic patients. Three non-synonymous homoplasmic variants in subunit six of the ATP s

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Succinate dehydrogenase B (SDHB) and D (SDHD) subunit gene mutations predispose to adrenal and extraadrenal pheochromocytomas, head and neck paragangliomas (HNPGL), and other tumor types. We report tumor risks in 358 patients with SDHB (n = 295) and SDHD (n = 63) mutations. Risks of HNPGL and pheochromocytoma in SDHB mutation carriers were 29% and 52%, respectively, at age 60 years and 71% and 29%, respectively, in SDHD mutation carriers. Risks of malignant pheochromocytoma and renal tumors (14% at age 70 years) were higher in SDHB mutation carriers; 55 different mutations (including a novel recurrent exon 1 deletion) were identified. No clear genotype-phenotype correlations were detected for SDHB mutations. However, SDHD mutations predicted to result in loss of expression or a truncated or unstable protein were associated with a significantly increased risk of pheochromocytoma compared to missense mutations that were not predicted to impair protein stability (most such cases had the common p.Pro81Leu mutation). Analysis of the largest cohort of SDHB/D mutation carriers has enhanced estimates of penetrance and tumor risk and supports in silicon protein structure prediction analysis for functional assessment of mutations. The differing effect of the SDHD p.Pro81Leu on HNPGL and pheochromocytoma, risks suggests differing mechanisms of tumorigenesis in SDH-associated HNPGL and pheochromocytoma. Hum Mutat 31:41-51, 2010. (C) 2009 Wiley-Liss, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: We describe a 4-generation family with familial medullary thyroid carcinoma (FMTC) - a variant of multiple endocrine neoplasia type 2 (MEN 2) without extra-thyroid features. RET mutation analysis confirmed an E768D mutation in exon 13 in 8 family members, 3 affected with medullary thyroid cancer alone while the other 5 were detected to be mutation carriers. This mutation has been described in very few families worldwide and the spectrum of disease and natural history is unclear. Results: Three affected members had medullary thyroid cancer (MTC) confirmed histologically at ages 25, 50 and 56 years, respectively. The E768D mutation appears to have a less aggressive clinical course compared to other high risk RET mutations with no evidence of clinical recurrence up to I I years after initial therapy. Of five gene carriers identified, two are asymptomatic at the age of 70 and 61, and three had raised calcitonin levels at 46, 39, and 45 years. Following total thyroidectomy, one gene carrier had a histologically normal thyroid at age 46, following a mildly elevated calcitonin, one had C-cell hyperplasia at the age of 39, and one had a frank focus of carcinoma in the left thyroid lobe at the age of 45. No members had evidence of phaeochromocytoma or parathyroid disease on screening. Conclusion: The RET E768D mutation is associated with MTC with a later age at presentation, incomplete penetrance and less aggressive course compared with other high risk RET mutations. To date in this family the E768D mutation has not been associated with either phaeochromocytoma or hyperparathyroidism. The appropriate screening strategy for and management of E768D carriers is difficult reflecting the phenotypic heterogeneity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evidence that activating mutations of the KRAS oncogene abolish the response to anti-epidermal growth factor receptor therapy has revolutionized the treatment of advanced colorectal cancer. This has resulted in the urgent demand for KRAS mutation testing in the clinical setting to aid choice of therapy. The Am of this study was to evaluate six different KRAS mutation detection methodologies on two series of primary colorectal cancer samples. Two series of 80 frozen and 74 formalin-fixed paraffin-embedded tissue samples were sourced and DNA was extracted at a central site before distribution to seven different testing sites. KRAS mutations in codons 12 and 13 were assessed by using single strand conformation polymorphism analysis, pyrosequencing, high resolution melting analysis, dideoxy sequencing, or the commercially available TIB Molbiol (Berlin, Germany) or DxS Diagnostic innovations (Manchester, UK) kits. in frozen tissue samples, concordance in KRAS status (defined as consensus in at least five assays) was observed in 66/80 (83%) cases. In par-affin tissue, concordance was 46/74 (63%) if all assays were considered or 71/74 (96%) using the five best performing assays. These results demonstrate that a variety of detection methodologies are suitable and provide comparable results for KRAS mutation analysis of clinical samples. (J Mol Diagn 2009, 11:543-552; DOI: 10.2353/jmoldx.2009.090057)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: Molecular pathology relies on identifying anomalies using PCR or analysis of DNA/RNA. This is important in solid tumours where molecular stratification of patients define targeted treatment. These molecular biomarkers rely on examination of tumour, annotation for possible macro dissection/tumour cell enrichment and the estimation of % tumour. Manually marking up tumour is error prone. Method: We have developed a method for automated tumour mark-up and % cell calculations using image analysis called TissueMark® based on texture analysis for lung, colorectal and breast (cases=245, 100, 100 respectively). Pathologists marked slides for tumour and reviewed the automated analysis. A subset of slides was manually counted for tumour cells to provide a benchmark for automated image analysisResults: There was a strong concordance between pathological and automated mark-up (100 % acceptance rate for macro-dissection). We also showed a strong concordance between manually/automatic drawn boundaries (median exclusion/inclusion error of 91.70 %/89 %). EGFR mutation analysis was precisely the same for manual and automated annotation-based macrodissection. The annotation accuracy rates in breast and colorectal cancer were 83 and 80 % respectively. Finally, region-based estimations of tumour percentage using image analysis showed significant correlation with actual cell counts. Conclusion: Image analysis can be used for macro-dissection to (i) annotate tissue for tumour and (ii) estimate the % tumour cells and represents an approach to standardising/improving molecular diagnostics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Improvement in DNA technology is increasingly revealing unexpected/unknown mutations in healthy persons and generating anxiety due to their still unknown health consequences. We report a 44-year-old healthy father of a 10-year-old daughter with bilateral coloboma and hearing loss, but without muscle weakness, in whom a whole-genome CGH revealed a deletion of exons 38-44 in the dystrophin gene. This mutation was inherited from her asymptomatic father, who was further clinically and molecularly evaluated for prognosis and genetic counseling (GC). This deletion was never identified by us in 982 Duchenne/Becker patients. To assess whether the present case represents a rare case of non-penetrance, and aiming to obtain more information for prognosis and GC, we suggested that healthy older relatives submit their DNA for analysis, to which several complied. Mutation analysis revealed that his mother, brother, and 56-year-old maternal uncle also carry the 38-44 deletion, suggesting it an unlikely cause of muscle weakness. Genome sequencing will disclose mutations and variants whose health impact are still unknown, raising important problems in interpreting results, defining prognosis, and discussing GC. We suggest that, in addition to family history, keeping the DNA of older relatives could be very informative, in particular for those interested in having their genome sequenced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bannayan-Riley-Ruvalcaba syndrome (BRRS) is a rare autosomal, dominantly-inherited, hamartoma syndrome with distinct phenotypic features. Mutations in the PTEN gene have been identified in PTEN hamartoma tumor syndromes. Our aim was to determine the correlation of phenotype-genotype relationships in a BRRS case. We have evaluated a PTEN mutation in a patient with vascular anomalies and the phenotypic findings of BRRS. We described an 8-year-old girl with the clinical features of BRRS, specifically with vascular anomalies. The mutation in the PTEN gene was identified by DNA sequencing. In our patient, we defined a de novo nonsense R335X (c. 1003 C>T) mutation in exon 8, which results in a premature termination codon. Due to vascular anomalies and hemangioma, the patient's left leg was amputated 1 year after the hemangioma diagnosis. Bannayan - Riley - Ruvalcaba syndrome patients with macrocephaly and vascular anomalies should be considered for PTEN mutation analysis and special medical care.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 7-month-old New Forest foal presented for episodes of recumbency and stiffness with myotonic discharges on electromyography. The observed phenotype resembled congenital myotonia caused by CLCN1 mutations in goats and humans. Mutation of the CLCN1 gene was considered as possible cause and mutation analysis was performed. The affected foal was homozygous for a missense mutation (c.1775A>C, p.D592A) located in a well conserved domain of the CLCN1 gene. The mutation showed a recessive mode of inheritance within the reported pony family. Therefore, this CLCN1 polymorphism is considered to be a possible cause of congenital myotonia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In evaluating the accuracy of diagnosis tests, it is common to apply two imperfect tests jointly or sequentially to a study population. In a recent meta-analysis of the accuracy of microsatellite instability testing (MSI) and traditional mutation analysis (MUT) in predicting germline mutations of the mismatch repair (MMR) genes, a Bayesian approach (Chen, Watson, and Parmigiani 2005) was proposed to handle missing data resulting from partial testing and the lack of a gold standard. In this paper, we demonstrate an improved estimation of the sensitivities and specificities of MSI and MUT by using a nonlinear mixed model and a Bayesian hierarchical model, both of which account for the heterogeneity across studies through study-specific random effects. The methods can be used to estimate the accuracy of two imperfect diagnostic tests in other meta-analyses when the prevalence of disease, the sensitivities and/or the specificities of diagnostic tests are heterogeneous among studies. Furthermore, simulation studies have demonstrated the importance of carefully selecting appropriate random effects on the estimation of diagnostic accuracy measurements in this scenario.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Sequencing based mutation screening assays of genes encompassing large numbers of exons could be substantially optimized by multiplex PCR, which enables simultaneous amplification of many targets in one reaction. In the present study, a multiplex PCR protocol originally developed for fragment analysis was evaluated for sequencing based mutation screening of the ornithine transcarbamylase (OTC) and the medium-chain acyl-CoA dehydrogenase (MCAD) genes. METHODS: Single exon and multiplex PCR protocols were applied to generate PCR templates for subsequent DNA sequencing of all exons of the OTC and the MCAD genes. For each PCR protocol and using the same DNA samples, 66 OTC and 98 MCAD sequence reads were generated. The sequences derived from the two different PCR methods were compared at the level of individual signal-to-noise ratios of the four bases and the proportion of high-quality base-signals. RESULTS: The single exon and the multiplex PCR protocol gave qualitatively comparable results for the two genes. CONCLUSIONS: Many existing sequencing based mutation analysis protocols may be easily optimized with the proposed method, since the multiplex PCR protocol was successfully applied without any re-design of the PCR primers and other optimization steps for generating sequencing templates for the OTC and MCAD genes, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E) /CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E) , CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Urea cycle disorders (UCD) are due to defects of any of its six enzymes or two transporters. The definitive diagnosis of defects of the three mitochondrial enzymes, N-acetylglutamate synthase (NAGS), carbamylphosphate synthetase I (CPS1) and ornithine transcarbamylase (OTC) depends on either molecular mutation analysis or measurement of enzyme activity, whereas the diagnosis of deficiencies of the three cytosolic enzymes argininosuccinate synthetase (ASS), argininosuccinate lyase (ASL) and arginase I (ARG1) is usually straightforward, based on marker metabolites. Enzyme assays for all UCD have been used since their first description, for disease confirmation and in some instances even for prenatal diagnosis. The genetic bases of the UCD have only been unraveled from the 1980s; the last gene cloned being the NAGS gene in 2002. In this review we discuss the enzymatic assays for all urea cycle enzymes from a historical perspective, their potential and drawbacks, and the current role of enzymatic analysis in UCD in general.