917 resultados para Muscle and tibiotarsus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal muscle makes up approximately 40% of the total body mass, providing structural support and enabling the body to maintain posture, to control motor movements and to store energy. It therefore plays a vital role in whole body metabolism. Skeletal muscle displays remarkable plasticity and is able to alter its size, structure and function in response to various stimuli; an essential quality for healthy living across the lifespan. Exercise is an important stimulator of extracellular and intracellular stress signals that promote positive adaptations in skeletal muscle. These adaptations are controlled by changes in gene transcription and protein translation, with many of these molecules identified as potential therapeutic targets to pharmacologically improve muscle quality in patient groups too ill to exercise. MicroRNAs (miRNAs) are recently identified regulators of numerous gene networks and pathways and mainly exert their effect by binding to their target messenger RNAs (mRNAs), resulting in mRNA degradation or preventing protein translation. The role of exercise as a regulatory stimulus of skeletal muscle miRNAs is now starting to be investigated. This review highlights our current understanding of the regulation of skeletal muscle miRNAs with exercise and disease as well as how they may control skeletal muscle health.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Age-related muscle wasting has been strongly implicated with falls and fractures in the elderly, but it has also been associated with cognitive decline and dementia. Progressive resistance training (PRT) and adequate dietary protein are recognised as important contributors to the maintenance of muscle health and function in older adults. However, both factors also have the potential to improve brain function and prevent cognitive decline via several pathways, including the regulation of various growth and neurotrophic factors [insulin-like growth factor-1 (IGF-1)]; brain-derived growth factor (BDNF)] and/or the modulation of systemic inflammation. The primary aim of this study is to investigate whether a modest increase in dietary protein achieved through the consumption of lean red meat three days per week, when combined with PRT, can enhance muscle mass, size and strength and cognitive function in community-dwelling older people. METHODS/DESIGN: The study design is a 48-week randomised controlled trial consisting of a 24-week intervention with a 24-week follow-up. Men and women (n=152) aged 65 years and over residing in the community will be randomly allocated to: 1) PRT and provided with 220 g (raw weight) of lean red meat to be cooked and divided into two 80 g servings on each of the three days that they complete their exercise session, or 2) control PRT in which participants will be provided with and advised to consume ≥1 serving (~1/2 cup) of rice and/or pasta or 1 medium potato on each of the three training days. The primary outcome measures will be muscle mass, size and strength and cognitive function. Secondary outcomes will include changes in: muscle function, neural health (corticospinal excitability and inhibition and voluntary activation), serum IGF-1 and BDNF, adipokines and inflammatory markers, fat mass and inter-/intra-muscular fat, blood pressure, lipids and health-related quality of life. All outcome measures will be assessed at baseline and 24 weeks, with the exception of cognitive function and the various neurobiological and inflammatory markers which will also be assessed at week 12. DISCUSSION: The findings from this study will provide important new information on whether a modest increase in dietary protein achieved through the ingestion of lean red meat can enhance the effects of PRT on muscle mass, size and strength as well as cognitive function in community-dwelling older adults. If successful, the findings will form the basis for more precise exercise and nutrition guidelines for the management and prevention of age-related changes in muscle and neural health and cognitive function in the elderly. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry: ACTRN12613001153707 . Date registered 16(th) October, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The participation of the superior belly of the omohyoid muscle and anterior belly of the digastric muscle in tongue and head movements was studied eletromyographically in 20 normal young volunteers. A pair of monopolar electrodes was used in each muscle for simultaneous recording of their actions. The muscles act in the following tongue movements: protrusion, right and left lateral movements, placement of the tip of the tongue on soft and hard palates and on the floor of the mouth. The strongest levels of activity of the superior belly of the omohyoid muscle were observed in the placement of the tip of the tongue on the soft palate, coincidentally with a greater dislocation of hyoid bone. Both of the muscles studied did not participate in the head's kinesiology. (C) 1999 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate if the Na+-channel activating alkaloid veratrine is able to change the oxidative and m-ATPase activities of a fast-twitch glycolytic muscle (EDL, extensor digitorum longus) and slow-twitch oxidative muscle (SOL, soleus) in mice. Oxidative fibers and glycolytic fibers were more sensitive to veratrine than oxidative-glycolytic fibers 15, 30 and 60 min after the i.m. injection of veratrine (10 ng/kg) with both showing an increase in their metabolic activity in both muscles. In EDL, the m-ATPase reaction revealed a significant (p < 0.001) decrease (50%) in the number of type IIB fibers after 30 min while the number of type I fibers increased by 550%. Type I fibers decreased from 34% in control SOL to 17% (50% decrease) in veratrinized muscles, with a 10% decrease in type IIA fibers within 15 min. A third type of fiber appeared in SOL veratrinized muscle, which accounted for 28% of the fibers. Our work gives evidence that the changes in the percentage of the fiber types induced by veratrine may be the result, at least partially, from a direct effect of veratrine on muscle fibers and else from an interaction with the muscle type influencing distinctively the response of a same fiber type. Based on the results obtained in the present study the alterations in EDL may be related to the higher number of Na+ channels present in this muscle whereas those in SOL may involve an action of veratrine on mitochondria. Although it is unlikely that the shift of enzymes activities induced by veratrine involves genotypic expression changes an alternative explanation for the findings cannot be substantiated by the present experimental approach. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superior belly of the omohyoid muscle and the anterior belly of the digastric muscle, were studied electromyographically in 20 young volunteers. For each muscle, 1 pair of monopolar electrodes was employed. One was a surface electrode and the other a needle electrode, which was inserted in the belly of the muscle. The surface electrode was placed 1 cm apart from the needle electrode. The most marked action of both muscles was on the movement of lowering the mandible. They also act in those movements for the performance of which they have associated a component of lowering the jaw, propulsion, laterality to the right and the left and retrusion. They are not active in the resting position and during jaw movements of elevation, extrusion and protrusion. Both muscles are active most of the time, simultaneously, but it is not possible to demonstrate that there is a synchronism between their actions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triplicate groups of juvenile suribim were fed for 183 days one of four different isonitrogenous (47.6% crude protein) and isolipidic (18.7% lipid) diets formulated using three different lipid sources: 100% fish oil (FO, diet 1); 100% pig lard (L, diet 2); 100% soybean oil (SO, diet 3), and FO/L/SO (1:1:1, w/w/w; diet 4). The tissue levels of fatty acids 18:2n - 6 and 18:3n - 3 decreased relative to corresponding dietary fatty acid values. The 20:5n - 3 and 22:6n - 3 composition of muscle and liver neutral lipids were linearly correlated with corresponding dietary fatty acid composition. In contrast, the 22:6n - 3 composition of the brain and eye were similar among treatments. The 22:6n - 3 level was enriched in all tissues, particularly in the neural tissues. Similar results were observed for tissue polar lipids: fatty acids content reflected dietary composition, with the exception of the 22:6n - 3 level, which showed enrichment and no differences between groups. Given these results, the importance of the biochemical functions (transport and/or metabolism) of 22:6n - 3 in the development of the neural system of surubim warrants further investigation. © Springer Science+Business Media B.V. 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results obtained from selenium fractionation in plasma, muscle and liver samples of Nile tilapia's (Oreochromis niloticus) after protein separation. The plasma, muscle and liver proteome was obtained by 2D-PAGE, and selenium in protein spots was qualitatively and quantitatively determined by synchrotron radiation X-ray fluorescence and graphite furnace atomic absorption spectrometry (GFAAS). The fluorescence spectra indicated the presence of selenium in three protein spots of plasma, two of muscle and one of liver. Selenium was found to be distributed mainly in proteins with a molar mass smaller than 57.0 kDa and with pI in the range of 5.9-9.6, with one exception in the plasma sample, which presented protein with a molar mass of 60.0 kDa. After acid mineralization of the protein spots, a GFAAS determination of the concentration of selenium bound to these proteins indicated a range of 1.35-6.82 mg per g of protein. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated messenger RNA (mRNA) expression of the growth-hormone (GHR) and insulin-like growth factor (IGF-1) genes in 28-day-old Japanese meat quails fed diets containing 0, 8, or 12% dietary glycerol in substitution of corn. Total RNA was extracted from the breast muscle and the DNA was amplified with specific primers using real-time PCR. Feed conversion ratio and feed intake were evaluated. The birds fed 8 and 12% glycerol presented higher IGF-1 mRNA expression [0.059 and 0.049 arbitrary units (AU), respectively] relative to those not fed with glycerol (0.029 AU), while 12% glycerol reduced GHR mRNA expression (0.022 AU). Dietary inclusion of 8% glycerol promoted similar performance results (feed conversion) as the diet with no glycerol. We conclude that inclusion of glycerol in the diet affects GHR and IGF-1 gene expression in Japanese meat quails. However, considering the performance results and the expression of the GHR and IGF-1 genes, 8% glycerol may be safely included in the diet of meat quails. © FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Duchenne muscular dystrophy (DMD), a lethal X-linked disorder, is the most common and severe form of muscular dystrophies, affecting I in 3,500 male births. Mutations in the DMD gene lead to the absence of muscle dystrophin and a progressive degeneration of skeletal muscle. The possibility to treat DMD through cell therapy has been widely investigated. We have previously shown that human adipose-derived stromal cells (hASCs) injected systemically in SJL mice are able to reach and engraft in the host muscle, express human muscle proteins, and ameliorate the functional performance of injected animals without any immunosuppression. However, before starting clinical trials in humans many questions still need to be addressed in preclinical studies, in particular in larger animal models, when available. The best animal model to address these questions is the golden retriever muscular dystrophy (GRMD) dog that reproduces the full spectrum of human DMD. Affected animals carry a mutation that predicts a premature termination codon in exon 8 and a peptide that is 5% the size of normal dystrophin. These dogs present clinical signs within the first weeks and most of them do not survive beyond age two. Here we show the results of local and intravenous injections of hASCs into GRMD dogs, without immunosuppression. We observed that hASCs injected systemically into the dog cephalic vein are able to reach, engraft, and express human dystrophin in the host GRMD dystrophic muscle up to 6 months after transplantation. Most importantly, we demonstrated that injecting a huge quantity of human mesenchymal cells in a large-animal model, without immunosuppression, is a safe procedure, which may have important applications for future therapy in patients with different forms of muscular dystrophies.