925 resultados para Muscle, Smooth, Vascular
Resumo:
Anchietia salutaris tea is traditionally used in Brazil to treat allergies, suggesting it contains compounds with antagonistic activity on the allergic mediators. We have evaluated extracts and semi-purified fractions of Anchietia salutaris as a source of compounds having this type of antagonism on the contraction induced in guinea-pig lung parenchymal strips and on platelet aggregation and shape change. After 10 min pre-incubation dichloromethane extracts containing 30 or 100 μg mL-1 inhibited the contraction induced by prostaglandin D2 (PGD2) in guinea-pig lung parenchymal strips with dose ratios (DR) of 0.76 ± 0.14 and 0.93 ± 0.19, respectively; the amount of inhibition depended both on the concentration and on the time of preincubation (DR after 30 min pre-incubation was 1.21 ± 0.51). The dichloromethane extract and its semi-purified fractions also inhibited the contractions induced by U46619, a more potent, stable, synthetic agonist of thromboxane A2 (TxA2) prostanoid (TP) receptors, the receptors acted upon by PGD2 to produce lung contractions. The dichloromethane extract did not inhibit the lung parenchymal contractions induced by histamine, leukotriene D4 (LTD4) or platelet-activating factor (PAF). Platelet aggregation induced by U46619, adenosine 5'-diphosphate (ADP) or PAF was not inhibited by the dichloromethane extract. Indeed, the extract potentiated platelet aggregation induced by low concentrations of these agonists and also potentiated the shape change induced by U46619. These results imply that the dichloromethane extract of Anchietia salutaris and its semipurified fractions contain an active principle that competitively inhibits TxA2 TP receptors, the stimulation of which causes lung parenchymal contraction. The inhibition seems to be selective for this receptor subtype, because the extract fails to inhibit platelet aggregation or shape change. This provides additional support of earlier reports suggesting the occurrence of TP receptor subtypes.
Resumo:
The surgical removal of the post-hepatic septum (PHS) in the tegu lizard, Tupinambis merianae, significantly reduces resting lung volume (VLr) and maximal lung volume (VLm) when compared with tegus with intact PHS. Standardised for body mass (MB), static lung compliance was significantly less in tegus without PHS. Pleural and abdominal pressures followed, like ventilation, a biphasic pattern. In general, pressures increased during expiration and decreased during inspiration. However, during expiration pressure changes showed a marked intra- and interindividual variation. The removal of the PHS resulted in a lower cranio-caudal intracoelomic pressure differential, but had no effect on the general pattern of pressure changes accompanying ventilation. These results show that a perforated PHS that lacks striated muscle has significant influence on static breathing mechanics in Tupinambis and by analogy provides valuable insight into similar processes that led to the evolution of the mammalian diaphragm. © 2003 Elsevier Science B.V. All rights reserved.
Resumo:
LAURENTINO, G. C., C. UGRINOWITSCH, H. ROSCHEL, M. S. AOKI, A. G. SOARES, M. NEVES JR, A. Y. AIHARA, A. DA ROCHA CORREA FERNANDES, and V. TRICOLI. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med. Sci. Sports Exerc., Vol. 44, No. 3, pp. 406-412, 2012. Purpose: The aim of the study was to determine whether the similar muscle strength and hypertrophy responses observed after either low-intensity resistance exercise associated with moderate blood flow restriction or high-intensity resistance exercise are associated with similar changes in messenger RNA (mRNA) expression of selected genes involved in myostatin (MSTN) signaling. Methods: Twenty-nine physically active male subjects were divided into three groups: low-intensity (20% one-repetition maximum (1RM)) resistance training (LI) (n = 10), low-intensity resistance exercise associated with moderate blood flow restriction (LIR) (n = 10), and high-intensity (80% 1RM) resistance exercise (HI) (n = 9). All of the groups underwent an 8-wk training program. Maximal dynamic knee extension strength (1RM), quadriceps cross-sectional area (CSA), MSTN, follistatin-like related genes (follistatin (FLST), follistatin-like 3 (FLST-3)), activin IIb, growth and differentiation factor-associated serum protein 1 (GASP-1), and MAD-related protein (SMAD-7) mRNA gene expression were assessed before and after training. Results: Knee extension 1RM significantly increased in all groups (LI = 20.7%, LIR = 40.1%, and HI = 36.2%). CSA increased in both the LIR and HI groups (6.3% and 6.1%, respectively). MSTN mRNA expression decreased in the LIR and HI groups (45% and 41%, respectively). There were no significant changes in activin IIb (P > 0.05). FLST and FLST-3 mRNA expression increased in all groups from pre- to posttest (P < 0.001). FLST-3 expression was significantly greater in the HI when compared with the LIR and LI groups at posttest (P = 0.024 and P = 0.018, respectively). GASP-1 and SMAD-7 gene expression significantly increased in both the LIR and HI groups. Conclusions: We concluded that LIR was able to induce gains in 1RM and quadriceps CSA similar to those observed after traditional HI. These responses may be related to the concomitant decrease in MSTN and increase in FLST isoforms, GASP-1, and SMAD-7 mRNA gene expression.
Resumo:
We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.
Resumo:
BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction.
Resumo:
Aims/hypothesis: Abnormalities of glucose and fatty acid metabolism in diabetes are believed to contribute to the development of oxidative stress and the long term vascular complications of the disease therefore the interactions of glucose and long chain fatty acids on free radical damage and endogenous antioxidant defences were investigated in vascular smooth muscle cells. Methods: Porcine vascular smooth muscle cells were cultured in 5 mmol/l or 25 mmol/l glucose for ten days. Fatty acids, stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and gamma-linolenic acid (18:3) were added with defatted bovine serum albumin as a carrier for the final three days. Results. Glucose (25 mmol/l) alone caused oxidative stress in the cells as evidenced by free radical-mediated damage to DNA, lipids, and proteins. The addition of fatty acids (0.2 mmol/l) altered the profile of free radical damage; the response was J-shaped with respect to the degree of unsaturation of each acid, and oleic acid was associated with least damage. The more physiological concentration (0.01 mmol/l) of gamma-linolenic acids was markedly different in that, when added to 25 mmol/l glucose it resulted in a decrease in free radical damage to DNA, lipids and proteins. This was due to a marked increase in levels of the antioxidant, glutathione, and increased gene expression of the rate-limiting enzyme in glutathione synthesis, gamma-glutamylcysteine synthetase. Conclusion/Interpretation: The results clearly show that glucose and fatty acids interact in the production of oxidative stress in vascular smooth muscle cells.
Restoration of glutathione levels in vascular smooth muscle cells exposed to high glucose conditions
Resumo:
Hyperglycaemia-induced oxidative stress may play a key role in the pathogenesis of diabetic vascular disease. The purpose of the present study was to determine the effects of glucose on levels of glutathione (a major intracellular antioxidant), the expression of gamma-glutamylcysteine synthetase (the rate-limiting enzyme in glutathione de novo synthesis) and DNA damage in human vascular smooth muscle cells in vitro. High glucose conditions and buthionine sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase, reduced intracellular glutathione levels in vascular smooth muscle cells. This reduction was accompanied by a decrease in the mRNA expression of both subunits of gamma-glutamylcysteine synthetase as well as an increase in DNA damage. In high glucose conditions incubation of the vascular smooth muscle cells with alpha-lipoic acid and L-cystine restored glutathione levels. We suggest that the decrease in GSH levels seen in high glucose conditions is mediated by the availability of cysteine (rate-limiting substrate in de novo glutathione synthesis) and the gene expression of the gamma- glutamylcysteine synthetase enzyme. Glutathione depletion is associated with an increase in DNA damage, which can be reduced when glutathione levels are restored.
Resumo:
The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.
Resumo:
Atheroma formation involves the movement of vascular smooth muscle cells (VSMC) into the subendothelial space. The aim of this study was to determine the involvement of PI3K and MAPK pathways and the importance of cross-talk between these pathways, in glucose-potentiated VSMC chemotaxis to serum factors. VSMC chemotaxis occurred in a serum gradient in 25 mmol/L glucose (but not in 5 mmol/L glucose) in association with increased phosphorylation (activation) of Akt and ERK1/2 in PI3K and MAPK pathways, respectively. Inhibitors of these pathways blocked chemotaxis, as did an mTOR inhibitor. VSMC expressed all class IA PI3K isoforms, but microinjection experiments demonstrated that only the p110beta isoform was involved in chemotaxis. ERK1/2 phosphorylation was reduced not only by MAPK pathway inhibitors but also by PI3K and mTOR inhibitors; when PI3K was inhibited, ERK phosphorylation could be induced by microinjected activated Akt, indicating important cross-talk between the PI3K and ERK1/2 pathways. Glucose-potentiated phosphorylation of molecules in the p38 and JNK MAPK pathways inhibited these pathways but did not affect chemotaxis. The statin, mevinolin, blocked chemotaxis through its effects on the MAPK pathway. Mevinolin-inhibited chemotaxis was restored by farnesylpyrophosphate but not by geranylgeranylpyrophosphate; in the absence of mevinolin, inhibition of farnesyltransferase reduced ERK phosphorylation and blocked chemotaxis, indicating a role for the Ras family of GTPases (MAPK pathway) under these conditions. In conclusion, glucose sensitizes VSMC to serum, inducing chemotaxis via pathways involving p110beta-PI3K, Akt, mTOR, and ERK1/2 MAPK. Cross-talk between the PI3K and MAPK pathways is necessary for VSMC chemotaxis under these conditions.
Resumo:
Hyperglycemia increases expression of platelet-derived growth factor (PDGF)-beta receptor and potentiates chemotaxis to PDGF-BB in human aortic vascular smooth muscle cells (VSMCs) via PI3K and ERK/MAPK signaling pathways. The purpose of this study was to determine whether increased activation of protein kinase C (PKC) isoforms had a modulatory effect on the PI3K and ERK/MAPK pathways, control of cell adhesiveness, and movement. All known PKC isoforms were assessed but only PKC alpha and PKC beta II levels were increased in 25 mmol/L glucose. However, only PKC beta II inhibition affected (decreased) PI3K pathway and MAPK pathway activities and inhibited PDGF-beta receptor upregulation in raised glucose, and specific MAPK inhibition was required to completely block the effect of glucose. In raised glucose conditions, activity of the ERK/MAPK pathway, PI3K pathway, and PKC beta II were all sensitive to aldose reductase inhibition. Chemotaxis to PDGF-BB (360 pmol/L), absent in 5 mmol/L glucose, was present in raised glucose and could be blocked by PKC beta II inhibition. Formation of lamellipodia was dependent on PI3K activation and filopodia on MAPK activation; both lamellipodia and filopodia were eliminated when PKC beta II was inhibited. FAK phosphorylation and cell adhesion were reduced by PI3K inhibition, and although MAPK inhibition prevented chemotaxis, it did not affect FAK phosphorylation or cell adhesiveness. In conclusion, chemotaxis to PDGF-BB in 25 mmol/L glucose is PKC beta II-dependent and requires activation of both the PI3K and MAPK pathways. Changes in cell adhesion and migration speed are mediated mainly through the PI3K pathway.