975 resultados para Muscle, Smooth, Vascular
Resumo:
AbstractBackground:Hypertension is a public health problem and increases the incidence of cardiovascular diseases.Objective:To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats.Methods:Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP).Results:Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H.Conclusion:One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.
Resumo:
In pig and humans, whose kidneys have a multi-calyceal collecting system, the initiation of ureteral peristalsis takes place in the renal calyces. In the pig and human ureter, recent evidence suggests that nitric oxide (NO) is an inhibitory mediator that may be involved in the regulation of peristalsis. This study was designed to assess whether the NO synthase/NO/cyclic GMP pathway modulates the motility of pig isolated calyceal smooth muscle. Immunohistochemistry revealed a moderate overall innervation of the smooth muscle layer, and no neuronal or inducible NO synthase (NOS) immunoreactivities. Endothelial NOS immunoreactivities were observed in the urothelium and vascular endothelium, and numerous cyclic GMP-immunoreactive (-IR) calyceal smooth muscle cells were found. As measured by monitoring the conversion of L-arginine to L-citrulline, Ca(2+)-dependent NOS activity was moderate. Assessment of functional effects was performed in tissue baths and showed that NO and SIN-1 decreased spontaneous and induced contractions of isolated preparations in a concentration-dependent manner. In strips exposed to NO, there was a 10-fold increase of the cyclic GMP levels compared with control preparations (P < 0.01). It is concluded that a non-neuronal NOS/NO/cyclic GMP pathway is present in pig calyces, where it may influence motility. The demonstration of cyclic GMP-IR smooth muscle cells suggests that NO acts directly on these cells. This NOS/NO/cyclic GMP pathway may be a target for drugs inhibiting peristalsis of mammalian upper urinary tract. Neurourol. Urodynam. 18:673-685, 1999.
Resumo:
Myocardin (MYOCD), a serum response factor (SRF) transcriptional cofactor, is essential for cardiac and smooth muscle development and differentiation. We show here by array-based comparative genomic hybridization, fluorescence in situ hybridization, and expression analysis approaches that MYOCD gene is highly amplified and overexpressed in human retroperitoneal leiomyosarcomas (LMS), a very aggressive well-differentiated tumor. MYOCD inactivation by shRNA in a human LMS cell line with MYOCD locus amplification leads to a dramatic decrease of smooth muscle differentiation and strongly reduces cell migration. Moreover, forced MYOCD expression in three undifferentiated sarcoma cell lines and in one liposarcoma cell line confers a strong smooth muscle differentiation phenotype and increased migration abilities. Collectively, these results show that human retroperitoneal LMS differentiation is dependent on MYOCD amplification/overexpression, suggesting that in these well-differentiated LMS, differentiation could be a consequence of an acquired genomic alteration. In this hypothesis, these tumors would not necessarily derive from cells initially committed to smooth muscle differentiation. These data also provide new insights on the cellular origin of these sarcomas and on the complex connections between oncogenesis and differentiation in mesenchymal tumors.
Resumo:
PURPOSE: Small intestinal submucosa is a xenogenic, acellular, collagen rich membrane with inherent growth factors that has previously been shown to promote in vivo bladder regeneration. We evaluate in vitro use of small intestinal submucosa to support the individual and combined growth of bladder urothelial cells and smooth muscle cells for potential use in tissue engineering techniques, and in vitro study of the cellular mechanisms involved in bladder regeneration. MATERIALS AND METHODS: Primary cultures of human bladder urothelial cells and smooth muscle cells were established using standard enzymatic digestion or explant techniques. Cultured cells were then seeded on small intestinal submucosa at a density of 1 x 105 cells per cm.2, incubated and harvested at 3, 7, 14 and 28 days. The 5 separate culture methods evaluated were urothelial cells seeded alone on the mucosal surface of small intestinal submucosa, smooth muscle cells seeded alone on the mucosal surface, layered coculture of smooth muscle cells seeded on the mucosal surface followed by urothelial cells 1 hour later, sandwich coculture of smooth muscle cells seeded on the serosal surface followed by seeding of urothelial cells on the mucosal surface 24 hours later, and mixed coculture of urothelial cells and smooth muscle cells mixed and seeded together on the mucosal surface. Following harvesting at the designated time points small intestinal submucosa cell constructs were formalin fixed and processed for routine histology including Masson trichrome staining. Specific cell growth characteristics were studied with particular attention to cell morphology, cell proliferation and layering, cell sorting, presence of a pseudostratified urothelium and matrix penetrance. To aid in the identification of smooth muscle cells and urothelial cells in the coculture groups, immunohistochemical analysis was performed with antibodies to alpha-smooth muscle actin and cytokeratins AE1/AE3. RESULTS: Progressive 3-dimensional growth of urothelial cells and smooth muscle cells occurred in vitro on small intestinal submucosa. When seeded alone urothelial cells and smooth muscle cells grew in several layers with minimal to no matrix penetration. In contrast, layered, mixed and sandwich coculture methods demonstrated significant enhancement of smooth muscle cell penetration of the membrane. The layered and sandwich coculture techniques resulted in organized cell sorting, formation of a well-defined pseudostratified urothelium and multilayered smooth muscle cells with enhanced matrix penetration. With the mixed coculture technique there was no evidence of cell sorting although matrix penetrance by the smooth muscle cells was evident. Immunohistochemical studies demonstrated that urothelial cells and smooth muscle cells maintain the expression of the phenotypic markers of differentiation alpha-smooth muscle actin and cytokeratins AE1/AE3. CONCLUSIONS: Small intestinal submucosa supports the 3-dimensional growth of human bladder cells in vitro. Successful combined growth of bladder cells on small intestinal submucosa with different seeding techniques has important future clinical implications with respect to tissue engineering technology. The results of our study demonstrate that there are important smooth muscle cell-epithelial cell interactions involved in determining the type of in vitro cell growth that occurs on small intestinal submucosa. Small intestinal submucosa is a valuable tool for in vitro study of the cell-cell and cell-matrix interactions that are involved in regeneration and various disease processes of the bladder.
Resumo:
OBJECTIVE: Fabry disease is an X-linked disorder resulting from alpha-galactosidase A deficiency. The cardiovascular findings include left ventricular hypertrophy (LVH) and increased intima-media thickness of the common carotid artery (CCA IMT). The current study examined the possible correlation between these parameters. To corroborate these clinical findings in vitro, plasma from Fabry patients was tested for possible proliferative effect on rat vascular smooth muscle cells (vascular smooth muscle cell [VSMC]) and mouse neonatal cardiomyocytes. METHODS AND RESULTS: Thirty male and 38 female patients were enrolled. LVH was found in 60% of men and 39% of women. Increased CCA IMT was equally present in males and females. There was a strong positive correlation between LV mass and CCA IMT (r2=0.27; P<0.0001). VSMC and neonatal cardiomyocyte proliferative response in vitro correlated with CCA IMT (r2=0.39; P<0.0004) and LV mass index (r2=0.19; P=0.028), respectively. CONCLUSIONS: LVH and CCA IMT occur concomitantly in Fabry suggesting common pathogenesis. The underlying cause may be a circulating growth-promoting factor whose presence has been confirmed in vitro.
Resumo:
BACKGROUND: We have developed a nonviral gene therapy method based on the electrotransfer of plasmid in the ciliary muscle. These easily accessible smooth muscle cells could be turned into a biofactory for any therapeutic proteins to be secreted in a sustained manner in the ocular media. METHODS: Electrical conditions, design of electrodes, plasmid formulation, method and number of injections were optimized in vivo in the rat by localizing β-galactosidase expression and quantifying reporter (luciferase) and therapeutic (anti-tumor necrosis factor) proteins secretion in the ocular media. Anatomical measurements were performed via human magnetic resonance imaging to design a human eye-sized prototype that was tested in the rabbit. RESULTS: In the rat, transscleral injection of 30 µg of plasmid diluted in half saline (77 mM NaCl) followed by application of eight square-wave electrical pulses (15 V, 10 ms, 5.3 Hz) using two platinum/iridium electrodes, an internal wire and an external sheet, delivered plasmid efficiently to the ciliary muscle fibers. Gene transfer resulted in a long-lasting (at least 5 months) and plasmid dose-/injection number- dependent secretion of different molecular weight proteins mainly in the vitreous, without any systemic exposure. Because ciliary muscle anatomical measurements remained constant among ages in adult humans, an integrated device comprising needle-electrodes was designed and manufactured. Its usefulness was validated in the rabbit. CONCLUSIONS: Plasmid electrotransfer to the ciliary muscle with a suitable medical device represents a promising local and sustained protein delivery system for treating posterior segment diseases, avoiding repeated intraocular injections.
Resumo:
BACKGROUND. Stroma plays an essential role in glandular function in different systems. In the prostate, it is responsible for the development and maintenance of the differentiated state of the epithelium. The marked reduction in the epithelial compartment of the prostate gland following castration is followed by a similarly important reorganization of the stroma. In this work, we characterized the reorganization of collagen fibers in the ventral prostate of castrated rats. METHODS. Histochemical tests and immunohistochemistry for type I and III collagens plus confocal microscopy of triple-labeled (collagen III, actin, and DNA) tissue sections were employed. RESULTS. We showed that collagen fibers are composed of type I and type III collagens and that they are progressively concentrated around the epithelial structures (ducts and acini) and become increasingly undulated and folded. Double-labeling of collagen fibers and F-actin demonstrated that smooth muscle cells (SMC) are intimately associated with collagen fibers. CONCLUSIONS. The results demonstrated a marked reorganization of the collagen fibers, and suggest an active role of the SMC in the reorganization of the fibrillar components of the stroma. (C) 2000 Wiley-Liss, Inc.
Resumo:
Cimetidine, an H2 receptor antagonist used for treatment of gastric ulcers, exerts antiandrogenic and antiangiogenic effects. In the testes cimetidine impairs spermatogenesis, Sertoli cells and peritubular tissue, inducing apoptosis in the myoid cells. Regarding the importance of histamine and androgens for vascular maintenance, the effect of cimetidine on the structural integrity of the testicular vasculature was evaluated. Adult male rats received cimetidine (CMTG) and saline (CG) for 50 days. The testes were fixed in buffered 4% formaldehyde and embedded in historesin and paraffin. In the PAS-stained sections, the microvascular density (MVD) and the vascular luminal area (VLA) were obtained. TUNEL method was performed for detection of cell death. Testicular fragments embedded in Araldite were analyzed under transmission electron microscopy. A significant decrease in the MVD and VLA and a high number of collapsed blood vessel profiles were observed in CMTG. Endothelial cells and vascular muscle cells were TUNEL-positive and showed ultrastructural features of apoptosis. These results indicate that cimetidine induces apoptosis in vascular cells, leading to testicular vascular atrophy. A possible antagonist effect of cimetidine on the H2 receptors and/or androgen receptors in the vascular cells may be responsible for the impairment of the testicular microvasculature.
Resumo:
The origin of smooth muscle cells involved in vascular healing was examined. Eighteen C57BL/6 (Ly 5.2) female mice underwent whole body irradiation followed by transfusion with 10(6) bone nucleated marrow cells from congenic (Ly 5.1) male donors. Successful repopulation by donor marrow was demonstrated after 4 weeks by flow cytometry with FITC-conjugated A20.1/Ly 5.1 monoclonal antibody. The iliac artery of six of the chimeric mice was scratch-injured by five passes of a probe, causing severe medial damage. After 4 weeks the arterial lumen was obliterated by a cell-rich neointima, with alpha-smooth muscle actin-containing cells present around the residual lumen. Approximately half of these cells were of male donor origin, as evidenced by in situ hybridization with a Y chromosome-specific probe. An organized arterial thrombus was formed in the remaining 12 chimeric mice by inserting an 8.0 silk suture into the left common carotid artery. Donor cells staining with alpha-smooth muscle actin were found in those arteries sustaining serious damage but not in arteries with minimal damage. Our results suggest that bone marrow-derived cells are recruited in vascular healing as a complementary source of smooth muscle-like cells when the media is severely damaged and few resident smooth muscle cells are available to effect repair.
Resumo:
Nicotine plays a role in smoking-associated cardiovascular diseases, and may upregulate matrix metalloproteinase (MMP)-2 and MMP-9. We examined whether nicotine induces the release of MMP-2 and MMP-9 by rat smooth muscle cells (SMC), and whether doxycycline (non-selective MMP inhibitor) inhibits the vascular effects produced by nicotine. SMC were incubated with nicotine 0, 50, and 150 nM for 48 h. MMP-2 and MMP-9 levels in the cell supernatants were determined by gelatin zymography. The acute changes in mean arterial pressure caused by nicotine 2 mu mol/kg (or saline) were assessed in rats pretreated with doxycycline (or saline). We also examined whether doxcycline (30 mg/Kg, i.p., daily) modifies the effects of nicotine (10 mg/kg/day; 4 weeks) on the endothelium-dependent relaxations of rat aortic rings. Aortic MMP-2 levels were assessed by gelatin zymography. Aortic gelatinolytic activity was assessed using a gelatinolytic activity kit. MMP-2 and MMP-9 levels increased in the supernatant of SMC cells incubated with nicotine 150 nM (P<0.05) but not with 50 nM. Nicotine (2 mu mol/kg) produced lower increases in the mean arterial pressure in rats pretreated with doxycycline than those found in rats pretreated with saline (26 +/- 4 vs. 37 +/- 4 mmHg, respectively; P<0.05). Nicotine impaired of the endothelium-dependent responses to acetylcholine, and treatment with doxycycline increased the potency (pD2) by approximately 25% (P<0.05). While we found no significant differences in aortic MMP-2 levels, nicotine significantly increased gelatinolytic activity (P<0.05). These findings suggest that nicotine produces cardiovascular effects involving MMPs. It is possible that MMPs inhibition may counteract the effects produced by nicotine. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Intraocular inflammation has been recognized as a major factor leading to blindness. Because tumor necrosis factor-alpha (TNF-alpha) enhances intraocular cytotoxic events, systemic anti-TNF therapies have been introduced in the treatment of severe intraocular inflammation, but frequent re-injections are needed and are associated with severe side effects. We have devised a local intraocular nonviral gene therapy to deliver effective and sustained anti-TNF therapy in inflamed eyes. In this study, we show that transfection of the ciliary muscle by plasmids encoding for three different variants of the p55 TNF-alpha soluble receptor, using electrotransfer, resulted in sustained intraocular secretion of the encoded proteins, without any detection in the serum. In the eye, even the shorter monomeric variant resulted in efficient neutralization of TNF-alpha in a rat experimental model of endotoxin-induced uveitis, as long as 3 months after transfection. A subsequent downregulation of interleukin (IL)-6 and iNOS and upregulation of IL-10 expression was observed together with a decreased rolling of inflammatory cells in anterior segment vessels and reduced infiltration within the ocular tissues. Our results indicate that using a nonviral gene therapy strategy, the local self-production of monomeric TNF-alpha soluble receptors induces a local immunomodulation enabling the control of intraocular inflammation.
Functional late outgrowth endothelial progenitors isolated from peripheral blood of burned patients.
Resumo:
BACKGROUND: Bioengineered skin substitutes are increasingly considered as a useful option for the treatment of full thickness burn injury. Their viability following grafting can be enhanced by seeding the skin substitute with late outgrowth endothelial progenitor cells (EPCs). However, it is not known whether autologous EPCs can be obtained from burned patients shortly after injury. METHODS: Late outgrowth EPCs were isolated from peripheral blood sampled obtained from 10 burned patients (extent 19.6±10.3% TBSA) within the first 24h of hospital admission, and from 7 healthy subjects. Late outgrowth EPCs were phenotyped in vitro. RESULTS: In comparison with similar cells obtained from healthy subjects, growing colonies from burned patients yielded a higher percentage of EPC clones (46 versus 17%, p=0.013). Furthermore, EPCs from burned patients secreted more vascular endothelial growth factor (VEGF) into the culture medium than did their counterparts from healthy subjects (85.8±56.2 versus 17.6±14pg/mg protein, p=0.018). When injected to athymic nude mice 6h after unilateral ligation of the femoral artery, EPCs from both groups of subjects greatly accelerated the reperfusion of the ischaemic hindlimb and increased the number of vascular smooth muscle cells. CONCLUSIONS: The present study supports that, in patients with burns of moderate extension, it is feasible to obtain functional autologous late outgrowth EPCs from peripheral blood. These results constitute a strong incentive to pursue approaches based on using autotransplantation of these cells to improve the therapy of full thickness burns.
Resumo:
PURPOSE: Plasmid electrotransfer in the ciliary muscle allows the sustained release of therapeutic proteins within the eye. The aim of this study was to evaluate whether the ocular production of TNF-alpha soluble receptor, using this nonviral gene therapy method, could have a beneficial local effect in a model of experimental autoimmune uveoretinitis (EAU). METHODS: Injection of a plasmid encoding a TNF-alpha p55 receptor (30 microg) in the ciliary muscle, combined with electrotransfer (200 V/cm), was carried out in Lewis rat eyes 4 days before the induction of EAU by S-antigen. Control eyes received naked plasmid electrotransfer or simple injection of the therapeutic plasmid. The disease was evaluated clinically and histologically. Cytokines and chemokines were analyzed in the ocular media by multiplex assay performed 15 and 21 days after immunization. RESULTS: Ocular TNF-alpha blockade, resulting from the local secretion of soluble receptors, was associated with delayed and significantly less severe uveitis, together with a reduction of the retinal damages. Compared with the controls, treated eyes showed significantly lower levels of IL-1beta and MCP1, higher levels of IL-13 and IL-4, and reduced NOS-2 expression in infiltrating cells. Treatment did not influence TNF-alpha levels in inguinal lymph nodes. CONCLUSIONS: Taken together, these results indicate that local immunomodulation was achieved and that no systemic adverse effects of TNF-alpha blockade observed after systemic injection of TNF-alpha inhibitors should be expected.
Resumo:
The effect of amino acid and/or glucose administration before and during exercise on protein metabolism in visceral tissues and skeletal muscle was examined in mongrel dogs. The dogs were subjected to treadmill running (150 minutes at 10 km/h and 12% incline) and intravenously infused with a solution containing amino acids and glucose (AAG), amino acids (AA), glucose (G) or saline (S) in randomized order. The infusion was started 60 minutes before exercise and continued until the end of the exercise period. An arteriovenous-difference technique was used to estimate both tissue protein degradation and synthesis. When S was infused, the release of leucine (Leu) from the gut and phenylalanine (Phe) from the hindlimb significantly increased during exercise, thus indicating that exercise augmented proteolysis in these tissues. The balance of Leu across the gut during exercise demonstrated a net uptake with both AAG and AA, whereas a net release was observed for G and S. In addition, Leu uptake in the gut during the last 90 minutes of the exercise period tended to be greater with AAG versus AA (P = .06). Phe balance across the hindlimb during the late exercise period showed a significant release with S, AA, and G, whereas the balance with AAG did not show a significant release. These results suggest that exercise-induced proteolysis in the gut may be reduced by supplementation with AA, and this effect may be enhanced by concomitant G administration. However, in skeletal muscle, both AA and G may be required to prevent net protein degradation during exercise. G provided without AA did not achieve net protein synthesis in either tissue.
Resumo:
There is growing interest in the association of radiotherapy and immunotherapy for the treatment of solid tumors. Here, we report an extremely effective combination of local irradiation (IR) and Shiga Toxin B (STxB)-based human papillomavirus (HPV) vaccination for the treatment of HPV-associated head and neck squamous cell carcinoma (HNSCC). The efficacy of the irradiation and vaccine association was tested using a model of HNSCC obtained by grafting TC-1/luciferase cells at a submucosal site of the inner lip of immunocompetent mice. Irradiation and the STxB-E7 vaccine acted synergistically with both single and fractionated irradiation schemes, resulting in complete tumor clearance in the majority of the treated mice. A dose threshold of 7.5 Gy was required to elicit the dramatic antitumor response. The combined treatment induced high levels of tumor-infiltrating, antigen-specific CD8(+) T cells, which were required to trigger the antitumor activity. Treatment with STxB-E7 and irradiation induced CD8(+) T-cell memory, which was sufficient to exert complete antitumor responses in both local recurrences and distant metastases. We also report for the first time that a combination therapy based on local irradiation and vaccination induces an increased pericyte coverage (as shown by αSMA and NG2 staining) and ICAM-1 expression on vessels. This was associated with enhanced intratumor vascular permeability that correlated with the antitumor response, suggesting that the combination therapy could also act through an increased accessibility for immune cells. The combination strategy proposed here offers a promising approach that could potentially be transferred into early-phase clinical trials.