998 resultados para Multiprotein Complex


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The docking protein FRS2α has been implicated as a mediator of signaling via fibroblast growth factor receptors (FGFRs). We have demonstrated that targeted disruption of FRS2α gene causes severe impairment in mouse development resulting in embryonal lethality at E7.0–E7.5. Experiments with FRS2α-deficient fibroblasts demonstrate that FRS2α plays a critical role in FGF-induced mitogen-activated protein (MAP) kinase stimulation, phosphatidylinositol-3 (PI-3) kinase activation, chemotactic response, and cell proliferation. Following FGF stimulation, tyrosine phosphorylated FRS2α functions as a site for coordinated assembly of a multiprotein complex that includes Gab1 and the effector proteins that are recruited by this docking protein. Furthermore, we demonstrate that different tyrosine phosphorylation sites on FRS2α are responsible for mediating different FGF-induced biological responses. These experiments establish the central role of FRS2α in signaling via FGFRs and demonstrate that FRS2α mediates multiple FGFR-dependent signaling pathways critical for embryonic development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aminoacyl-tRNA synthetases (tRNA synthetases) of higher eukaryotes form a multiprotein complex. Sequence elements that are responsible for the protein assembly were searched by using a yeast two-hybrid system. Human cytoplasmic isoleucyl-tRNA synthetase is a component of the multi-tRNA synthetase complex and it contains a unique C-terminal appendix. This part of the protein was used as bait to identify an interacting protein from a HeLa cDNA library. The selected sequence represented the internal 317 amino acids of human bifunctional (glutamyl- and prolyl-) tRNA synthetase, which is also known to be a component of the complex. Both the C-terminal appendix of the isoleucyl-tRNA synthetase and the internal region of bifunctional tRNA synthetase comprise repeating sequence units, two repeats of about 90 amino acids, and three repeats of 57 amino acids, respectively. Each repeated motif of the two proteins was responsible for the interaction, but the stronger interaction was shown by the native structures containing multiple motifs. Interestingly, the N-terminal extension of human glycyl-tRNA synthetase containing a single motif homologous to those in the bifunctional tRNA synthetase also interacted with the C-terminal motif of the isoleucyl-tRNA synthetase although the enzyme is not a component of the complex. The data indicate that the multiplicity of the binding motif in the tRNA synthetases is necessary for enhancing the interaction strength and may be one of the determining factors for the tRNA synthetases to be involved in the formation of the multi-tRNA synthetase complex.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A minichromosome maintenance (MCM) protein complex has been implicated in restricting DNA replication to once per cell cycle in Xenopus egg extracts, based on the behavior of a single protein, XMCM3. Using a two-hybrid screen with XMCM3, we have identified a novel member of the MCM family in Xenopus that is essential for DNA replication. The protein shows strong homology to Saccharomyces cerevisiae MCM7 (CDC47) and has thus been named XMCM7. XMCM7 is present in a multiprotein complex with other MCM proteins. It binds to chromatin and is displaced from chromatin by the act of replication. XMCM7 does not preferentially colocalize with sites of DNA replication but colocalizes with XMCM3 throughout replication. Immunodepletion of the MCM complex from Xenopus egg extract by anti-XMCM7 antibodies inhibits DNA replication of sperm and permeable HeLa G2 nuclei but not permeable HeLa G1 nuclei. Replication capacity of the Xenopus egg extract immunodepleted of the MCM complex by anti-XMCM7 antibody can be rescued by MCM proteins eluted from anti-XMCM3 antibody. We conclude that both proteins are present in the same complex in Xenopus egg extract throughout the cell cycle, that they remain together after binding to chromatin and during DNA replication, and that they perform similar functions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O exossomo é um complexo multiproteico conservado evolutivamente de archaea a eucariotos superiores que desempenha funções celulares essenciais tais como: atividade exoribonucleolítica 3\'→5\', regulação dos níveis de mRNA, maturação de RNAs estruturais e controle de qualidade de RNAs durante os vários estágios do mecanismo de expressão gênica. Em Archaea, o exossomo é composto por até quatro subunidades diferentes, duas com domínios de RNase PH, aRrp41 e aRrp42, e duas com domínios de ligação a RNAs, aCsl4 e aRrp4. Três cópias das proteínas aRrp4 e/ou aCsl4 se associam com o núcleo hexamérico catalítico do anel de RNase PH e completam a formação do complexo. A proteína PaNip7 é um cofator de regulação do exossomo da archaea Pyrococcus abyssi e atua na inibição do complexo enzimático ligando-se simultaneamente ao exossomo e a RNAs. Neste projeto, a reconstituição in vitro do exossomo da archaea Pyrococcus abyssi formado pela proteína de topo PaCsl4 foi obtida. Para tanto foram realizadas análises de interação proteica usando as técnicas de cromatografia de afinidade, gel filtração e SDS-PAGE. Em adição à formação da isoforma PaCsl4-exossomo, um fragmento peptídico correspondente à região C-terminal da PaNip7 foi sintetizado pelo método da fase sólida, purificado por RP-HPLC e o purificado foi caracterizado por LC/ESI-MS almejando realizar futuros experimentos de interação com o exossomo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Signals generated in response to extracellular stimuli at the plasma membrane are transmitted through cytoplasmic transduction cascades to the nucleus. We report the identification of a pathway directly linking the small GTPase Rab5, a key regulator of endocytosis, to signal transduction and mitogenesis. This pathway operates via APPL1 and APPL2, two Rab5 effectors, which reside on a subpopulation of endosomes. In response to extracellular stimuli such as EGF and oxidative stress, APPL1 translocates from the membranes to the nucleus where it interacts with the nucleosome remodeling and histone deacetylase multiprotein complex NuRD/MeCP1, an established regulator of chromatin structure and gene expression. Both APPL1 and APPL2 are essential for cell proliferation and their function requires Rab5 binding. Our findings identify an endosomal compartment bearing Rab5 and APPL proteins as an intermediate in signaling between the plasma membrane and the nucleus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Craniofacial anomalies are a common feature of human congenital dysmorphology syndromes, suggesting that genes expressed in the developing face are likely to play a wider role in embryonic development. To facilitate the identification of genes involved in embryogenesis, we previously constructed an enriched cDNA library by subtracting adult mouse liver cDNA from that of embryonic day (E)10.5 mouse pharyngeal arch cDNA. From this library, 273 unique clones were sequenced and known proteins binned into functional categories in order to assess enrichment of the library (1). We have now selected 31 novel and poorly characterised genes from this library and present bioinformatic analysis to predict proteins encoded by these genes, and to detect evolutionary conservation. Of these genes 61% (19/31) showed restricted expression in the developing embryo, and a subset of these was chosen for further in silico characterisation as well as experimental determination of subcellular localisation based on transient transfection of predicted full-length coding sequences into mammalian cell lines. Where a human orthologue of these genes was detected, chromosomal localisation was determined relative to known loci for human congenital disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Résumé : La maladie osseuse de Paget (MP) est un désordre squelettique caractérisé par une augmentation focale et désorganisée du remodelage osseux. Les ostéoclastes (OCs) de MP sont plus larges, actifs et nombreux, en plus d’être résistants à l’apoptose. Même si la cause précise de la MP demeure inconnue, des mutations du gène SQSTM1, codant pour la protéine p62, ont été décrites dans une proportion importante de patients avec MP. Parmi ces mutations, la substitution P392L est la plus fréquente, et la surexpression de p62P392L dans les OCs génère un phénotype pagétique partiel. La protéine p62 est impliquée dans de multiples processus, allant du contrôle de la signalisation NF-κB à l’autophagie. Dans les OCs humains, un complexe multiprotéique composé de p62 et des kinases PKCζ et PDK1 est formé en réponse à une stimulation par Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL), principale cytokine impliquée dans la formation et l'activation des OCs. Nous avons démontré que PKCζ est impliquée dans l’activation de NF-κB induite par RANKL dans les OCs, et dans son activation constitutive en présence de p62P392L. Nous avons également observé une augmentation de phosphorylation de Ser536 de p65 par PKCζ, qui est indépendante d’IκB et qui pourrait représenter une voie alternative d'activation de NF-κB en présence de la mutation de p62. Nous avons démontré que les niveaux de phosphorylation des régulateurs de survie ERK et Akt sont augmentés dans les OCs MP, et réduits suite à l'inhibition de PDK1. La phosphorylation des substrats de mTOR, 4EBP1 et la protéine régulatrice Raptor, a été évaluée, et une augmentation des deux a été observée dans les OCs pagétiques, et est régulée par l'inhibition de PDK1. Également, l'augmentation des niveaux de base de LC3II (associée aux structures autophagiques) observée dans les OCs pagétiques a été associée à un défaut de dégradation des autophagosomes, indépendante de la mutation p62P392L. Il existe aussi une réduction de sensibilité à l’induction de l'autophagie dépendante de PDK1. De plus, l’inhibition de PDK1 induit l’apoptose autant dans les OCs contrôles que pagétiques, et mène à une réduction significative de la résorption osseuse. La signalisation PDK1/Akt pourrait donc représenter un point de contrôle important dans l’activation des OCs pagétiques. Ces résultats démontrent l’importance de plusieurs kinases associées à p62 dans la sur-activation des OCs pagétiques, dont la signalisation converge vers une augmentation de leur survie et de leur fonction de résorption, et affecte également le processus autophagique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Friedreich ataxia (FRDA) is the most common form of autosomal-recessive ataxia. Common nonmotor features include cardiomyopathy and diabetes mellitus. At present, no effective treatments are available to prevent disease progression. Age of onset varies from infancy to adulthood. In the majority of patients, FRDA is caused by intronic GAA expansions in FXN, which encodes a highly-conserved small mitochondrial matrix protein, frataxin. A mouse model of FRDA has been difficult to generate because complete loss of frataxin causes early embryonic lethality. Although there are some controversies about the function of frataxin, recent biochemical and structural studies have confirmed that it is a component of the multiprotein complex that assembles iron-sulfur clusters in the mitochondrial matrix. The main consequences of frataxin deficiency are energy deficit, altered iron metabolism, and oxidative damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The de novo design of membrane proteins remains difficult despite recent advances in understanding the factors that drive membrane protein folding and association. We have designed a membrane protein PRIME (PoRphyrins In MEmbrane) that positions two non-natural iron diphenylporphyrins (Fe(III)DPP's) sufficiently close to provide a multicentered pathway for transmembrane electron transfer. Computational methods previously used for the design of multiporphyrin water-soluble helical proteins were extended to this membrane target. Four helices were arranged in a D(2)-symmetrical bundle to bind two Fe(II/III) diphenylporphyrins in a bis-His geometry further stabilized by second-shell hydrogen bonds. UV-vis absorbance, CD spectroscopy, analytical ultracentrifugation, redox potentiometry, and EPR demonstrate that PRIME binds the cofactor with high affinity and specificity in the expected geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adaptor protein (AP) complexes bind to transmembrane proteins destined for internalization and to membrane lipids, so linking cargo to the accessory internalization machinery. This machinery interacts with the appendage domains of APs, which have platform and beta-sandwich subdomains, forming the binding surfaces for interacting proteins. Proteins that interact with the subdomains do so via short motifs, usually found in regions of low structural complexity of the interacting proteins. So far, up to four motifs have been identified that bind to and partially compete for at least two sites on each of the appendage domains of the AP2 complex. Motifs in individual accessory proteins, their sequential arrangement into motif domains, and partial competition for binding sites on the appendage domains coordinate the formation of endocytic complexes in a temporal and spatial manner. In this work, we examine the dominant interaction sequence in amphiphysin, a synapse-enriched accessory protein, which generates membrane curvature and recruits the scission protein dynamin to the necks of coated pits, for the platform subdomain of the alpha-appendage. The motif domain of amphiphysin1 contains one copy of each of a DX(F/W) and FXDXF motif. We find that the FXDXF motif is the main determinant for the high affinity interaction with the alpha-adaptin appendage. We describe the optimal sequence of the FXDXF motif using thermodynamic and structural data and show how sequence variation controls the affinities of these motifs for the alpha-appendage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene causes the familial cancer syndrome, VHL disease, characterized by a predisposition to renal cell carcinoma and other tumor types. Loss of VHL gene function also is found in a majority of sporadic renal carcinomas. A preponderance of the tumor-disposing inherited missense mutations detected in VHL disease are within the elongin-binding domain of VHL. This region mediates the formation of a multiprotein VHL complex containing elongin B, elongin C, cul-2, and Rbx1. This VHL complex is thought to function as an E3 ubiquitin ligase. Here, we report that VHL proteins harboring mutations which disrupt elongin binding are unstable and rapidly degraded by the proteasome. In contrast, wild-type VHL proteins are directly stabilized by associating with both elongins B and C. In addition, elongins B and C are stabilized through their interactions with each other and VHL. Thus, the entire VHL/elongin complex is resistant to proteasomal degradation. Because the elongin-binding domain of VHL is frequently mutated in cancers, these results suggest that loss of elongin binding causes tumorigenesis by compromising VHL protein stability and/or potential VHL ubiquitination functions.