941 resultados para Multiprocessor scheduling with resource sharing
Resumo:
Consider the problem of scheduling sporadically-arriving tasks with implicit deadlines using Earliest-Deadline-First (EDF) on a single processor. The system may undergo changes in its operational modes and therefore the characteristics of the task set may change at run-time. We consider a well-established previously published mode-change protocol and we show that if every mode utilizes at most 50% of the processing capacity then all deadlines are met. We also show that there exists a task set that misses a deadline although the utilization exceeds 50% by just an arbitrarily small amount. Finally, we present, for a relevant special case, an exact schedulability test for EDF with mode change.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a greedy capacity sharing and stealing policy to efficiently exchange bandwidth among tasks, minimising the degree of deviation from the ideal system's behaviour caused by inter-application blocking. The proposed capacity exchange protocol (CXP) focus on exchanging extra capacities as early, and not necessarily as fairly, as possible. This loss of optimality is worth the reduced complexity as the protocol's behaviour nevertheless tends to be fair in the long run and outperforms other solutions in highly dynamic scenarios, as demonstrated by extensive simulations.
Resumo:
This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.
Resumo:
This paper presents a methodology for applying scheduling algorithms using Monte Carlo simulation. The methodology is based on a decision support system (DSS). The proposed methodology combines a genetic algorithm with a new local search using Monte Carlo Method. The methodology is applied to the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The methodology is tested on a set of standard instances taken from the literature and compared with others. The computation results validate the effectiveness of the proposed methodology. The DSS developed can be utilized in a common industrial or construction environment.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
Presented at 21st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2015). 19 to 21, Aug, 2015, pp 122-131. Hong Kong, China.
Resumo:
Scheduling, job shop, uncertainty, mixed (disjunctive) graph, stability analysis
Resumo:
Most research on single machine scheduling has assumedthe linearity of job holding costs, which is arguablynot appropriate in some applications. This motivates ourstudy of a model for scheduling $n$ classes of stochasticjobs on a single machine, with the objective of minimizingthe total expected holding cost (discounted or undiscounted). We allow general holding cost rates that are separable,nondecreasing and convex on the number of jobs in eachclass. We formulate the problem as a linear program overa certain greedoid polytope, and establish that it issolved optimally by a dynamic (priority) index rule,whichextends the classical Smith's rule (1956) for the linearcase. Unlike Smith's indices, defined for each class, ournew indices are defined for each extended class, consistingof a class and a number of jobs in that class, and yieldan optimal dynamic index rule: work at each time on a jobwhose current extended class has larger index. We furthershow that the indices possess a decomposition property,as they are computed separately for each class, andinterpret them in economic terms as marginal expected cost rate reductions per unit of expected processing time.We establish the results by deploying a methodology recentlyintroduced by us [J. Niño-Mora (1999). "Restless bandits,partial conservation laws, and indexability. "Forthcomingin Advances in Applied Probability Vol. 33 No. 1, 2001],based on the satisfaction by performance measures of partialconservation laws (PCL) (which extend the generalizedconservation laws of Bertsimas and Niño-Mora (1996)):PCL provide a polyhedral framework for establishing theoptimality of index policies with special structure inscheduling problems under admissible objectives, which weapply to the model of concern.
Resumo:
A minimum cost spanning tree (mcst) problem analyzes the way to efficiently connect individuals to a source when they are located at different places. Once the efficient tree is obtained, the question on how allocating the total cost among the involved agents defines, in a natural way, a confliicting claims situation. For instance, we may consider the endowment as the total cost of the network, whereas for each individual her claim is the maximum amount she will be allocated, that is, her connection cost to the source. Obviously, we have a confliicting claims problem, so we can apply claims rules in order to obtain an allocation of the total cost. Nevertheless, the allocation obtained by using claims rules might not satisfy some appealing properties (in particular, it does not belong to the core of the associated cooperative game). We will define other natural claims problems that appear if we analyze the maximum and minimum amount that an individual should pay in order to support the minimum cost tree. Keywords: Minimum cost spanning tree problem, Claims problem, Core JEL classification: C71, D63, D71.
Resumo:
In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.