939 resultados para Multilayer Adsorption


Relevância:

30.00% 30.00%

Publicador:

Resumo:

4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation in the electrooxidation process of the amino-containing compound. X-ray photoelectron spectroscopy measurement proves the presence of 4-carboxylphenylamine monolayer on the GCE. The redox responses of various electroactive probes were investigated on the 4-ABA-modified GCE. Electron transfer to Fe(CN)(6)(3-) in solutions of various pHs was studied by both cyclic voltammetry and electrochemical impedance analysis on the modified electrode. Changes in the solution pH value result in the variation of the terminal group charge state, based on which surface pK(a) values are estimated. The 4-ABA-modified GCE was used as a suitable charged substrate to fabricate polyoxometalates-consisting (POM-consisting) monolayer and multilayer films through layer-by-layer assembly based on electrostatic attraction. Cyclic voltammetry shows the uniform growth of these three-dimensional multilayer films. Taking K10H3[Pr-(SiMo7W4O39)(2)]. H2O (abbreviated as Pr(SiMo7W4)(2)), for example, the preparation and electrochemical behavior of its monolayer and multilayer film had been investigated in detail. This modification strategy is proven to be a general one suitable for anchoring many kinds of POMs on the 4-ABA-modified GCE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two modification methods for multilayer formation, i.e. immersion growth and electrochemical growth, were studied comparatively for their influence on the electrochemical behavior and the electrocatalytic properties of the thus-fabricated SiMo11V-containing multilayer films. Electrochemical growth was proven to be a more suitable method than immersion growth in preparing uniform ultrathin multilayer self-assemblies with good functions. We investigated the effects of scan rate and pH on the electrochemical behavior of the monolayer and multilayer films. We also compared the electrocatalytic effects on the reduction of BrO3- and HNO2 by the multilayer films prepared by the two methods. Moreover, the influence of multilayer thickness and the identity of the outermost layer on the electrocatalytic properties were studied. Much higher catalytic currents appeared on the thicker multilayer films than those on the thinner ones. On the other hand, the catalytic currents became smaller when the multilayer films with SiMo11V as the outermost layer were covered with an additional quarternized poly(4-vinylpyridine) layer partially complexed with osmium bis(2,2'-bypyridine) chloride (QPVP-Os layer). These influences were believed to be due to the different quantities of electrocatalyst loaded in the multilayer films and the blocking effect of the QPVP-Os outermost layer. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multilayer films were fabricated by layer-by-layer electrostatic deposition techniques between poly(diallyIdimethylammonium chloride) (PDDA) and calf thymus DNA (CT DNA) on glassy carbon and quartz substrates. Electrochemical impedance spectroscopy (EIS), Fourier transform infrared (FTIR) spectroscopy and UV-vis spectroscopy demonstrated the uniform assembly of PDDA/DNA multilayer films, and X-ray photoelectron spectroscopy confirmed the elemental composition of the films. Moreover, the interaction of DNA in PDDA/DNA films with methyl green was investigated by UV-vis spectroscopy and circular dichroism (CD). (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assembly of alternating DNA and positively charged poly(dimethyldiallylammonium chloride) (PDDA) multilayer films by electrostatic layer-by-layer adsorption has been studied. Real time surface plasmon resonance (BIAcore) technique was used to characterize and monitor the formation of multilayer films in solution in real time continuously. The results indicate that the uniform multilayer can be obtained on the poly(ethylenimine) (PEI) coated substrate surface. The kinetics of the adsorption of DNA on PDDA surface was also studied by real-time BIAcore technique, and the observed rate constant was calculated using a Langmuir model (k(obs) = (1.28 +/- 0.08) x 10(-2) s(-1)).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new multilayer film fabricated based on electrostatic attraction in this laboratory was firstly characterized by the electrochemical impedance spectroscopy. The relationship between the charge-transfer resistance and double-layer capacitance with the number of layers was obtained through analyzing the impedance data. It demonstrated that the multilayer film showed a unique structure with the film growth. Compared to other electrochemical methods, the electrochemical impedance spectroscopy was proved to be a very sensitive and useful technique for characterizing the multilayer films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrathin multilayer films of a polybasic lanthanide heteropoly tungstate-molybdate complex and a cationic polymer of quaternized poly(4-vinylpyridine) partially complexed with osmium bis(2,2'-bipyridine) have been fabricated on a gold electrode precoated with a cysteamine self-assembled monolayer. The multilayer films have been characterized by optical spectroscopy, small-angle X-ray diffraction, and electrochemical methods (cyclic voltammetry and electrochemical impedance). Especially, the electrochemical impedance spectroscopy is developed to monitor the layer deposition processes. It provides important information such as double-layer capacitance and charge-transfer resistance. All obtained results reveal regular film growth with each layer adsorption. (C) 2001 The Electrochemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In situ electrochemical scanning tunneling microscopy (ECSTM) and an electrochemical quartz crystal microbalance (EQCM) have been employed to follow the adsorption/desorption processes of phenanthraquinone (PQ sat. in 0.1 mol l(-1) HClO4, solution) accompanied with an electrochemical redox reaction on the Au electrode. The result shows that: (1) the reduced form PQH(2) adsorbed at the Au electrode and the desorption occurred when PQH(2) was oxidized to PQ; (2) the adsorption process initiates at steps or kinks which provide high active sites on the electrode surface for adsorption, and as the potential shifts to negative, a multilayer of PQH(2) may be formed at the Au electrode; (3) the reduced PQH(2) adsorbed preferentially in the area where the tip had been scanned continually; this result suggests that the tip induction may accelerate the adsorption of PQH(2) on the Au(111) electrode. Two kinds of possible reason have been discussed; (4) high resolution STM images show the strong substrate lattice information and the weak monolayer adsorbate lattice information simultaneously. The PQH(2) molecules pack into a not perfectly ordered condensed physisorbed layer at potentials of 0.1 and 0.2 V with an average lattice constant a = 11.5 +/- 0.4 Angstrom, b = 11.5 +/- 0.4 Angstrom, and gamma = 120 +/- 2 degrees; the molecular lattice is rotated with respect to the substrate lattice by about 23 +/- 2 degrees. (C) 1997 Elsevier Science S.A.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The adsorption of alanine on Cu {110} was studied by a combination of near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT). Large chemical shifts in the C 1s, N 1s, and O 1s XP spectra were found between the alanine multilayer and the chemisorbed and pseudo-(3 x 2) alaninate layers. From C, N, and O K-shell NEXAFS spectra the tilt angles of the carboxylate group (approximate to 26 degrees in plane with respect to [1 (1) over bar0] and approximate to 45 degrees out of plane) and the C-N bond angle with respect to [1 (1) over bar0] could be determined for the pseudo-(3 x 2) overlayer. Using this information three adsorption geometries could be eliminated from five p(3 x 2) structures which lead to almost identical heats of adsorption in the DFT calculations between 1.40 and 1.47 eV/molecule. Due to the small energy difference between the remaining two structures it is not unlikely that these coexist on the surface at room temperature. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surfactant properties of aqueous protein mixtures ( ranaspumins) from the foam nests of the tropical frog Physalaemus pustulosus have been investigated by surface tension, two-photon excitation. uorescence microscopy, specular neutron reflection, and related biophysical techniques. Ranaspumins lower the surface tension of water more rapidly and more effectively than standard globular proteins under similar conditions. Two- photon excitation. uorescence microscopy of nest foams treated with fluorescent marker ( anilinonaphthalene sulfonic acid) shows partitioning of hydrophobic proteins into the air-water interface and allows imaging of the foam structure. The surface excess of the adsorbed protein layers, determined from measurements of neutron reflection from the surface of water utilizing H2O/D2O mixtures, shows a persistent increase of surface excess and layer thickness with bulk concentration. At the highest concentration studied ( 0.5 mg ml(-1)), the adsorbed layer is characterized by three distinct regions: a protruding top layer of similar to20 Angstrom, a middle layer of similar to30 Angstrom, and a more diffuse submerged layer projecting some 25 Angstrom into bulk solution. This suggests a model involving self-assembly of protein aggregates at the air-water interface in which initial foam formation is facilitated by specific surfactant proteins in the mixture, further stabilized by subsequent aggregation and cross-linking into a multilayer surface complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ellipsometry was used to investigate the influence of ionic strength (I) and pH on the adsorption of bovine serum albumin (BSA) or beta-lactoglobulin (BLG) onto preabsorbed layers of two polycations: poly(diallyldimethylammonium chloride) (PDADMAC) or poly(4-vinylpyridine bromide) quaternized with linear aliphatic chains of two (QPVP-C2) or five (QPVP-C5) carbons. Comparisons among results for the three polycations reveal hydrophobic interactions, while comparisons between BSA and BLG-proteins of very similar isoelectric points (pI)-indicate the importance of protein charge anisotropy. At pH close to pI, the ionic strength dependence of the adsorbed amount of protein (Gamma) displayed maxima in the range 10 < I < 25 mM corresponding to Debye lengths close to the protein radii. Visualization of protein charge by Delphi suggested that these ionic strength conditions corresponded to suppression of long-range repulsion between polycations and protein positive domains, without diminution of short-range attraction between polycation segments and locally negative protein domains, in a manner similar to the behavior of PE-protein complexes in solution.(1-4) This description was consistent with the disappearance of the maxima at pH either above or below pI. In the former case, Gamma values decrease exponentially with I(1/2), due to screening of attractions, while in the latter case adsorption of both proteins decreased at low I due to strong repulsion. Close to or below pI both proteins adsorbed more strongly onto QPVP-C5 than onto QPVP-C2 or PDADMAC due to hydrophobic interactions with the longer alkyl group. Above pI, the adsorption was more pronounced with PDADMAC because these chains may assume more loosely bound layers due to lower linear charge density.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrate reduction on palladium multilayers deposited on platinum single crystal electrodes was studied by cyclic voltammetry and FTIR spectroscopy in acid and alkaline media. The results are compared with those obtained with bulk palladium single crystals. The reaction is sensitive to the electrode surface structure, the reactivity depending on the solution pH. In acid solution nitrate was reduced at potentials below the potential of zero total charge (pztc), when the electrode is negatively charged. Competition between nitrate, hydrogen and anion adsorption and NO formation and accumulation at the surface are proposed as the main reasons for the slow reaction rate. On the bulk palladium single crystal electrodes, NO formation leads to a fast blockage of the surface resulting in a very low activity for nitrate reduction. In alkaline solution, nitrate is reduced at more positive potentials with significantly higher current being measured on the Pd multilayer on Pt(100) electrode. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we analyzed the adsorption of a large number of gases and vapors on graphitized thermal carbon black. The Henry constant was used to determine the adsorbate-adsorbent interaction energy, which is found to be a modest decreasing function of temperature. Analysis of the complete adsorption isotherm over a wider range of pressure yields information on the monolayer coverage concentration and the adsorbate-adsorbate interaction energy. Among the various equations tested, the Hill-de Boer equation accounting for BET-postulated multilayer formation describes well the adsorption isotherms of all adsorbates. On average, the adsorbate-adsorbate interaction energy in the adsorbed phase is less than that in the bulk phase, suggesting that the distance between adsorbed molecules in the first layer of the adsorbed phase is slightly less than the equilibrium distance between two adsorbate molecules in the bulk phase. This suggests that the first layer is in a compressed state, which is due to the attraction of the adsorbent surface. The monolayer concentration as determined from the fitting of the Hill-de Boer equation with experimental data is slightly larger than the values calculated from the molecular projection area, suggesting that molecules can be oriented such that a larger number of molecules can be accommodated on the carbon black surface. This further supports the shorter distance between adsorbate molecules in the adsorbed phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The performance of intermolecular potential models on the adsorption of benzene on graphitized thermal carbon black at various temperatures is investigated. Two models contain only dispersive sites, whereas the other two models account explicitly for the dispersive and electrostatic sites. Using numerous data in the literature on benzene adsorption on graphitized thermal carbon black at various temperatures, we have found that the effect of surface mediation on interaction between adsorbed benzene molecules must be accounted for to describe correctly the adsorption isotherm as well as the isosteric heat. Among the two models with partial charges tested, the WSKS model of Wick et at. I that has only six dispersive sites and three discrete partial charges is better than the very expensive all-atom model of Jorgensen and Severance.(2) Adsorbed benzene molecules on graphitized thermal carbon black have a complex orientation with respect to distance from the surface and also with respect to loading. At low loadings, they adopt the parallel configuration relative to the graphene surface, whereas at higher loadings (still less than monolayer coverage) some molecules adopt a slant orientation to maximize the fluid-fluid interaction. For loadings in the multilayer region, the orientation of molecules in the first layer is influenced by the presence of molecules in the second layer. The data that are used in this article come from the work of Isirikyan and Kiselev,(3) Pierotti and Smallwood,(4) Pierce and Ewing,(5) Belyakova, Kiselev, and Kovaleva,(6) and Carrott et al.(7)