999 resultados para Multiferroic materials


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-phase magnetoelectric multiferroics are ferroelectric materials that display some form of magnetism. In addition, magnetic and ferroelectric order parameters are not independent of one another. Thus, the application of either an electric or magnetic field simultaneously alters both the electrical dipole configuration and the magnetic state of the material. The technological possibilities that could arise from magnetoelectric multiferroics are considerable and a range of functional devices has already been envisioned. Realising these devices, however, requires coupling effects to be significant and to occur at room temperature. Although such characteristics can be created in piezoelectric-magnetostrictive composites, to date they have only been weakly evident in single-phase multiferroics. Here in a newly discovered room temperature multiferroic, we demonstrate significant room temperature coupling by monitoring changes in ferroelectric domain patterns induced by magnetic fields. An order of magnitude estimate of the effective coupling coefficient suggests a value of ~1 × 10-7 sm-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, lead iron tantalate/lead zirconium titanate (PZTFT) was demonstrated to possess large, but unreliable, magnetoelectric coupling at room temperature. Such large coupling would be desirable for device applications but reproducibility would also be critical. To better understand the coupling, the properties of all 3 ferroic order parameters, elastic, electric, and magnetic, believed to be present in the material across a range of temperatures, are investigated. In high temperature elastic data, an anomaly is observed at the orthorhombic mm2 to tetragonal 4mm transition, Tot = 475 K, and a softening trend is observed as the temperature is increased toward 1300 K, where the material is known to become cubic. Thermal degradation makes it impos- sible to measure elastic behavior up to this temperature, however. In the low temperature region, there are elastic anomalies near ≈40 K and in the range 160–245 K. The former is interpreted as being due to a magnetic ordering transition and the latter is interpreted as a hysteretic regime of mixed rhom- bohedral and orthorhombic structures. Electrical and magnetic data collected below room temperature show anomalies at remarkably similar temperature ranges to the elastic data. These observations are used to suggest that the three order parameters in PZTFT are strongly coupled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of LaxBi1-xMnO3 thin films grown on SrTiO3 substrates is reported. It is shown that these films grow epitaxially in a narrow pressure-temperature range. A detailed structural and compositional characterization of the films is performed within the growth window. The structure and the magnetization of this system are investigated. We find a clear correlation between the magnetization and the unit-cell volume that we ascribe to Bi deficiency and the resultant introduction of a mixed valence on the Mn ions. On these grounds, we show that the reduced magnetization of LaxBi1-xMnO3 thin films compared to the bulk can be explained quantitatively by a simple model, taking into account the deviation from nominal composition and the Goodenough-Kanamori-Anderson rules of magnetic interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heusler intermetallics Mn$_{2}Y$Ga and $X_{2}$MnGa ($X,Y$=Fe, Co, Ni) undergo tetragonal magnetostructural transitions that can result in half metallicity, magnetic shape memory, or the magnetocaloric effect. Understanding the magnetism and magnetic behavior in functional materials is often the most direct route to being able to optimize current materials and design future ones.rnrnSynchrotron soft x-ray magnetic spectromicroscopy techniques are well suited to explore the the competing effects from the magnetization and the lattice parameters in these materials as they provide detailed element-, valence-, and site-specific information on the coupling of crystallographic ordering and electronic structure as well as external parameters like temperature and pressure on the bonding and exchange.rnrnFundamental work preparing the model systems of spintronic, multiferroic, and energy-related compositions is presented for context. The methodology of synchrotron spectroscopy is presented and applied to not only magnetic characterization but also of developing a systematic screening method for future examples of materials exhibiting any of the above effects. rnrnChapters include an introduction to the concepts and materials under consideration (Chapter 1); an overview of sample preparation techniques and results, and the kinds of characterization methods employed (Chapter 2); spectro- and microscopic explorations of $X_2$MnGa/Ge (Chapter 3); spectroscopic investigations of the composition series Mn$_{2}Y$Ga to the logical Mn$_3$Ga endpoint (Chapter 4); and a summary and overview of upcoming work (Chapter 5). Appendices include the results of a “Think Tank” for the Graduate School of Excellence MAINZ (Appendix A) and details of an imaging project now in progress on magnetic reversal and domain wall observation in the classical Heusler material Co$_2$FeSi (Appendix B).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiferroic behaviour at room temperature is demonstrated in ε-Fe2O3. The simple composition of this new ferromagnetic ferroelectric oxide and the discovery of a robust path for its thin film growth by using suitable seed layers may boost the exploitation of ε-Fe2O3 in novel devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the critical dynamics of several magnetoelectric compounds at their phase transition were examined. Mostly measurements of the dielectric properties in the frequency range of below 1 Hz up to 5 GHz were employed to evaluate the critical exponents for both magnetic field and temperature-dependent measurements. Most of the materials that are part of this work show anomalous behavior, especially at very low temperatures where quantum fluctuations are of the order of or even dominate those induced thermally. This anomalous behavior manifests in different forms. In Dy2Ti2O7 we demonstrate the existence of electric dipoles on magnetic monopoles. Here the dynamics at the critical endpoint located at 0.36K and in a magnetic field of 1T parallel to the [111] direction are of special interest. At this critical endpoint the expected critical slowing down of the dynamics could not only not be observed but instead the opposite, critical speeding-up by several orders of magnitude, could be demonstrated. Furthermore, we show that the phase diagram of Dy2Ti2O7 in this field direction can be reproduced solely from the dynamical properties, for example the resonance frequency of the observed relaxation that is connected to the monopole movement. Away from this point of the phase diagram the dynamics are slowing-down with reduction of temperature as one would expect. Additional measurements on Y2Ti2O7, a structurally identical but non-magnetic material, show only slowing down with reduction of temperature and no additional features. A possible explanation for the observed critical speeding-up is a coherent movement of magnetic monopoles close to the critical field that increases the resonance frequency by reducing the damping of the process. LiCuVO4 on the other hand behaves normally at its phase transition as long as the temperature is higher than 0.4 K. In this temperature regime the dynamics show critical slowing-down analogous to classical ferroelectric materials. This analogy extends also towards higher frequencies where the permittivity displays a ‘dispersion’ minimum that is temperature-dependent but of the order of 2 GHz. Below 0.4K the observed behavior changes drastically. Here we found no longer relaxational behavior but instead an excitation with very low energy. This low energy excitation was predicted by theory and is caused by nearly gapless soliton excitations within the 1D Cu2+ chains of LiCuVO4. Finally, in TbMnO3 the dynamics of the phase transition into the multiferroic phase was observed at roughly 27 K, a much higher temperature compared to the other materials. Here the expected critical slowing-down was observed, even though in low-frequency measurements this transition into the ferroelectric phase is overshadowed by the so-called c-axis relaxation. Therefore, only frequencies above 1MHz could be used to determine the critical exponents for both temperatureand magnetic-field-dependent measurements. This was done for both the peak frequency as well as the relaxation strength. In TbMnO3 an electromagnetic soft-mode with small optical weight causes the observed fluctuations, similar to the case of multiferroic MnWO4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, the magnetic properties of four transition-metal oxides are presented. Their multiferroic and magnetoelectric phases have been investigated by means of different neutron scattering techniques. The materials TbMnO3 and MnWO4 belong to the group of spin-induced multiferroics. Their ferroelectric polarization can be explained by the inverse DzyaloshinskiiMoriya interaction. Another common feature of both materials is the presence of subsequent magnetic transitions from a spin-density wave to a spin spiral. The features of the phase transitions have been studied in both materials and it could be shown that diffuse magnetic scattering from the spin spiral is present even in the ordered spin-density wave phase. The excitation spectrum in the multiferroic phase of TbMnO3 was investigated in detail and a comprehensive dataset was obtained using time-of-flight spectroscopy. A spin-wave model could be obtained which can quantitatively describe the full dispersion. Furthermore, the polarization of the zone-center excitations could be derived which fit well to data from inelastic neutron spectroscopy and infrared spectroscopy. With the combination of spherical neutron polarimetry and a poling of the sample by an electric field, it was possible to observe the chiral magnetic component of the magnetic excitations in TbMnO3 and MnWO4. The spin-wave model for TbMnO3 obtained in this thesis is able to correctly describe the dispersion of this component. The double tungstate NaFe(WO4)2 is isostructural to the multiferroic MnWO4 and develops a complex magnetic phase diagram. By the use of neutron diffraction techniques, the zero-field structure and high-field structures in magnetic field applied along the b-axis could be determined. The data reveal a direct transition into an incommensurate spin-spiral structure. The value of the incommensurability is driven by anharmonic modulations and shows strong hysteresis effects. The static and dynamic properties in the magnetoelectric spin-glass phase of Ni0.42Mn0.58TiO3 were studied in detail. The spin-glass phase is composed of short-ranged MnTiO3 and NiTiO3-type order. The antiferromagnetic domains could be controlled by crossed magnetic and electric fields, which was visualized using spherical neutron polarimetry. A comprehensive dataset of the magnetic excitations in the spin-glass phase was collected. The dataset revealed correlations in the hexagonal plane which are only weakly coupled along the c-axis. The excitation spectra could be simulated by taking into account the MnTiO3-type order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work attempts have been made to study the glass transition temperature of alternative mould materials by using both microwave heating and conventional oven heating. In this present work three epoxy resins, namely R2512, R2515 and R2516, which are commonly used for making injection moulds have been used in combination with two hardeners H2403 and H2409. The magnetron microwave generator used in this research is operating at a frequency of 2.45 GHz with a hollow rectangular waveguide. In order to distinguish the effects between the microwave and conventional heating, a number of experiments were performed to test their mechanical properties such as tensile and flexural strengths. Additionally, differential scanning calorimeter technique was implemented to measure the glass transition temperature on both microwave and conventional heating. This study provided necessary evidences to establish that microwave heated mould materials resulted with higher glass transition temperature than the conventional heating. Finally, attempts were also made to study the microstructure of microwave-cured materials by using a scanning electron microscope in order to analyze the morphology of cured specimens.