794 resultados para Multi-sector New Keynesian DSGE models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we apply GMM estimation to assess the relevance of domestic versus external determinants of CPI inflation dynamics in a sample of OECD countries typically classified as open economies. The analysis is based on a variant of the small open-economy New Keynesian Phillips Curve derived in Galí and Monacelli (Rev Econ Stud 72:707–734, 2005), where the novel feature is that expectations about fluctuations in the terms of trade enter explicitly. For most countries in our sample the expected relative change in the terms of trade emerges as the more relevant inflation driver than the contemporaneous domestic output gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho investigamos as propriedades em pequena amostra e a robustez das estimativas dos parâmetros de modelos DSGE. Tomamos o modelo de Smets and Wouters (2007) como base e avaliamos a performance de dois procedimentos de estimação: Método dos Momentos Simulados (MMS) e Máxima Verossimilhança (MV). Examinamos a distribuição empírica das estimativas dos parâmetros e sua implicação para as análises de impulso-resposta e decomposição de variância nos casos de especificação correta e má especificação. Nossos resultados apontam para um desempenho ruim de MMS e alguns padrões de viés nas análises de impulso-resposta e decomposição de variância com estimativas de MV nos casos de má especificação considerados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work aims to analyze the interaction and the effects of administered prices in the economy, through a DSGE model and the derivation of optimal monetary policies. The model used is a standard New Keynesian DSGE model of a closed economy with two sectors companies. In the first sector, free prices, there is a continuum of firms, and in the second sector of administered prices, there is a single firm. In addition, the model has positive trend inflation in the steady state. The model results suggest that price movements in any sector will impact on both sectors, for two reasons. Firstly, the price dispersion causes productivity to be lower. As the dispersion of prices is a change in the relative price of any sector, relative to general prices in the economy, when a movement in the price of a sector is not followed by another, their relative weights will change, leading to an impact on productivity in both sectors. Second, the path followed by the administered price sector is considered in future inflation expectations, which is used by companies in the free sector to adjust its optimal price. When this path leads to an expectation of higher inflation, the free sector companies will choose a higher mark-up to accommodate this expectation, thus leading to higher inflation trend when there is imperfect competition in the free sector. Finally, the analysis of optimal policies proved inconclusive, certainly indicating that there is influence of the adjustment model of administered prices in the definition of optimal monetary policy, but a quantitative study is needed to define the degree of impact.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brazilian Association of Simmental and Simbrasil Cattle Farmers provided 29,510 records from 10,659 Simmental beef cattle; these were used to estimate (co)variance components and genetic parameters for weights in the growth trajectory, based on multi-trait (MTM) and random regression models (RRM). The (co)variance components and genetic parameters were estimated by restricted maximum likelihood. In the MTM analysis, the likelihood ratio test was used to determine the significance of random effects included in the model and to define the most appropriate model. All random effects were significant and included in the final model. In the RRM analysis, different adjustments of polynomial orders were compared for 5 different criteria to choose the best fit model. An RRM of third order for the direct additive genetic, direct permanent environmental, maternal additive genetic, and maternal permanent environment effects was sufficient to model variance structures in the growth trajectory of the animals. The (co)variance components were generally similar in MTM and RRM. Direct heritabilities of MTM were slightly lower than RRM and varied from 0.04 to 0.42 and 0.16 to 0.45, respectively. Additive direct correlations were mostly positive and of high magnitude, being highest at closest ages. Considering the results and that pre-adjustment of the weights to standard ages is not required, RRM is recommended for genetic evaluation of Simmental beef cattle in Brazil. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modal analysis of a structural system consists on computing its vibrational modes. The experimental way to estimate these modes requires to excite the system with a measured or known input and then to measure the system output at different points using sensors. Finally, system inputs and outputs are used to compute the modes of vibration. When the system refers to large structures like buildings or bridges, the tests have to be performed in situ, so it is not possible to measure system inputs such as wind, traffic, . . .Even if a known input is applied, the procedure is usually difficult and expensive, and there are still uncontrolled disturbances acting at the time of the test. These facts led to the idea of computing the modes of vibration using only the measured vibrations and regardless of the inputs that originated them, whether they are ambient vibrations (wind, earthquakes, . . . ) or operational loads (traffic, human loading, . . . ). This procedure is usually called Operational Modal Analysis (OMA), and in general consists on to fit a mathematical model to the measured data assuming the unobserved excitations are realizations of a stationary stochastic process (usually white noise processes). Then, the modes of vibration are computed from the estimated model. The first issue investigated in this thesis is the performance of the Expectation- Maximization (EM) algorithm for the maximum likelihood estimation of the state space model in the field of OMA. The algorithm is described in detail and it is analysed how to apply it to vibration data. After that, it is compared to another well known method, the Stochastic Subspace Identification algorithm. The maximum likelihood estimate enjoys some optimal properties from a statistical point of view what makes it very attractive in practice, but the most remarkable property of the EM algorithm is that it can be used to address a wide range of situations in OMA. In this work, three additional state space models are proposed and estimated using the EM algorithm: • The first model is proposed to estimate the modes of vibration when several tests are performed in the same structural system. Instead of analyse record by record and then compute averages, the EM algorithm is extended for the joint estimation of the proposed state space model using all the available data. • The second state space model is used to estimate the modes of vibration when the number of available sensors is lower than the number of points to be tested. In these cases it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors). Here, the proposed state space model and the EM algorithm are used to estimate the modal parameters taking into account the data of all setups. • And last, a state space model is proposed to estimate the modes of vibration in the presence of unmeasured inputs that cannot be modelled as white noise processes. In these cases, the frequency components of the inputs cannot be separated from the eigenfrequencies of the system, and spurious modes are obtained in the identification process. The idea is to measure the response of the structure corresponding to different inputs; then, it is assumed that the parameters common to all the data correspond to the structure (modes of vibration), and the parameters found in a specific test correspond to the input in that test. The problem is solved using the proposed state space model and the EM algorithm. Resumen El análisis modal de un sistema estructural consiste en calcular sus modos de vibración. Para estimar estos modos experimentalmente es preciso excitar el sistema con entradas conocidas y registrar las salidas del sistema en diferentes puntos por medio de sensores. Finalmente, los modos de vibración se calculan utilizando las entradas y salidas registradas. Cuando el sistema es una gran estructura como un puente o un edificio, los experimentos tienen que realizarse in situ, por lo que no es posible registrar entradas al sistema tales como viento, tráfico, . . . Incluso si se aplica una entrada conocida, el procedimiento suele ser complicado y caro, y todavía están presentes perturbaciones no controladas que excitan el sistema durante el test. Estos hechos han llevado a la idea de calcular los modos de vibración utilizando sólo las vibraciones registradas en la estructura y sin tener en cuenta las cargas que las originan, ya sean cargas ambientales (viento, terremotos, . . . ) o cargas de explotación (tráfico, cargas humanas, . . . ). Este procedimiento se conoce en la literatura especializada como Análisis Modal Operacional, y en general consiste en ajustar un modelo matemático a los datos registrados adoptando la hipótesis de que las excitaciones no conocidas son realizaciones de un proceso estocástico estacionario (generalmente ruido blanco). Posteriormente, los modos de vibración se calculan a partir del modelo estimado. El primer problema que se ha investigado en esta tesis es la utilización de máxima verosimilitud y el algoritmo EM (Expectation-Maximization) para la estimación del modelo espacio de los estados en el ámbito del Análisis Modal Operacional. El algoritmo se describe en detalle y también se analiza como aplicarlo cuando se dispone de datos de vibraciones de una estructura. A continuación se compara con otro método muy conocido, el método de los Subespacios. Los estimadores máximo verosímiles presentan una serie de propiedades que los hacen óptimos desde un punto de vista estadístico, pero la propiedad más destacable del algoritmo EM es que puede utilizarse para resolver un amplio abanico de situaciones que se presentan en el Análisis Modal Operacional. En este trabajo se proponen y estiman tres modelos en el espacio de los estados: • El primer modelo se utiliza para estimar los modos de vibración cuando se dispone de datos correspondientes a varios experimentos realizados en la misma estructura. En lugar de analizar registro a registro y calcular promedios, se utiliza algoritmo EM para la estimación conjunta del modelo propuesto utilizando todos los datos disponibles. • El segundo modelo en el espacio de los estados propuesto se utiliza para estimar los modos de vibración cuando el número de sensores disponibles es menor que vi Resumen el número de puntos que se quieren analizar en la estructura. En estos casos es usual realizar varios ensayos cambiando la posición de los sensores de un ensayo a otro (múltiples configuraciones de sensores). En este trabajo se utiliza el algoritmo EM para estimar los parámetros modales teniendo en cuenta los datos de todas las configuraciones. • Por último, se propone otro modelo en el espacio de los estados para estimar los modos de vibración en la presencia de entradas al sistema que no pueden modelarse como procesos estocásticos de ruido blanco. En estos casos, las frecuencias de las entradas no se pueden separar de las frecuencias del sistema y se obtienen modos espurios en la fase de identificación. La idea es registrar la respuesta de la estructura correspondiente a diferentes entradas; entonces se adopta la hipótesis de que los parámetros comunes a todos los registros corresponden a la estructura (modos de vibración), y los parámetros encontrados en un registro específico corresponden a la entrada en dicho ensayo. El problema se resuelve utilizando el modelo propuesto y el algoritmo EM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models of neutrino-driven core-collapse supernova explosions have matured considerably in recent years. Explosions of low-mass progenitors can routinely be simulated in 1D, 2D, and 3D. Nucleosynthesis calculations indicate that these supernovae could be contributors of some lighter neutron-rich elements beyond iron. The explosion mechanism of more massive stars remains under investigation, although first 3D models of neutrino-driven explosions employing multi-group neutrino transport have become available. Together with earlier 2D models and more simplified 3D simulations, these have elucidated the interplay between neutrino heating and hydrodynamic instabilities in the post-shock region that is essential for shock revival. However, some physical ingredients may still need to be added/improved before simulations can robustly explain supernova explosions over a wide range of progenitors. Solutions recently suggested in the literature include uncertainties in the neutrino rates, rotation, and seed perturbations from convective shell burning. We review the implications of 3D simulations of shell burning in supernova progenitors for the ‘perturbations-aided neutrino-driven mechanism,’ whose efficacy is illustrated by the first successful multi-group neutrino hydrodynamics simulation of an 18 solar mass progenitor with 3D initial conditions. We conclude with speculations about the impact of 3D effects on the structure of massive stars through convective boundary mixing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The International Energy Agency has repeatedly identified increased end-use energy efficiency as the quickest, least costly method of green house gas mitigation, most recently in the 2012 World Energy Outlook, and urges all governing bodies to increase efforts to promote energy efficiency policies and technologies. The residential sector is recognised as a major potential source of cost effective energy efficiency gains. Within the EU this relative importance can be seen from a review of the National Energy Efficiency Action Plans (NEEAP) submitted by member states, which in all cases place a large emphasis on the residential sector. This is particularly true for Ireland whose residential sector has historically had higher energy consumption and CO2 emissions than the EU average and whose first NEEAP targeted 44% of the energy savings to be achieved in 2020 from this sector. This thesis develops a bottom-up engineering archetype modelling approach to analyse the Irish residential sector and to estimate the technical energy savings potential of a number of policy measures. First, a model of space and water heating energy demand for new dwellings is built and used to estimate the technical energy savings potential due to the introduction of the 2008 and 2010 changes to part L of the building regulations governing energy efficiency in new dwellings. Next, the author makes use of a valuable new dataset of Building Energy Rating (BER) survey results to first characterise the highly heterogeneous stock of existing dwellings, and then to estimate the technical energy savings potential of an ambitious national retrofit programme targeting up to 1 million residential dwellings. This thesis also presents work carried out by the author as part of a collaboration to produce a bottom-up, multi-sector LEAP model for Ireland. Overall this work highlights the challenges faced in successfully implementing both sets of policy measures. It points to the wide potential range of final savings possible from particular policy measures and the resulting high degree of uncertainty as to whether particular targets will be met and identifies the key factors on which the success of these policies will depend. It makes recommendations on further modelling work and on the improvements necessary in the data available to researchers and policy makers alike in order to develop increasingly sophisticated residential energy demand models and better inform policy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For efficient planning of waste collection routing, large municipalities may be partitioned into convenient sectors. The real case under consideration is the municipality of Monção, in Portugal. Waste collection involves more than 1600 containers over an area of 220 km2 and a population of around 20,000 inhabitants. This is mostly a rural area where the population is distributed in small villages around the 33 boroughs centres (freguesia) that constitute the municipality. In most freguesias, waste collection is usually conducted 3 times a week. However, there are situations in which the same collection is done every day. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a three-phase approach. The first phase, which is the main concern of the presentation, introduces a new method for sectorization inspired by Electromagnetism and Coulomb’s Law. The matter is not only about territorial division, but also the frequency of waste collection, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. The second phase addresses the routing problems in each sector: new Mixed Capacitated Arc Routing with Limited Multi-Landfills models will be presented. The last phase integrates Sectoring and Routing. Computational results confirm the effectiveness of the entire novel approach.