980 resultados para Multi-camera


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Distributed Wireless Smart Camera (DWSC) network is a special type of Wireless Sensor Network (WSN) that processes captured images in a distributed manner. While image processing on DWSCs sees a great potential for growth, with its applications possessing a vast practical application domain such as security surveillance and health care, it suffers from tremendous constraints. In addition to the limitations of conventional WSNs, image processing on DWSCs requires more computational power, bandwidth and energy that presents significant challenges for large scale deployments. This dissertation has developed a number of algorithms that are highly scalable, portable, energy efficient and performance efficient, with considerations of practical constraints imposed by the hardware and the nature of WSN. More specifically, these algorithms tackle the problems of multi-object tracking and localisation in distributed wireless smart camera net- works and optimal camera configuration determination. Addressing the first problem of multi-object tracking and localisation requires solving a large array of sub-problems. The sub-problems that are discussed in this dissertation are calibration of internal parameters, multi-camera calibration for localisation and object handover for tracking. These topics have been covered extensively in computer vision literatures, however new algorithms must be invented to accommodate the various constraints introduced and required by the DWSC platform. A technique has been developed for the automatic calibration of low-cost cameras which are assumed to be restricted in their freedom of movement to either pan or tilt movements. Camera internal parameters, including focal length, principal point, lens distortion parameter and the angle and axis of rotation, can be recovered from a minimum set of two images of the camera, provided that the axis of rotation between the two images goes through the camera's optical centre and is parallel to either the vertical (panning) or horizontal (tilting) axis of the image. For object localisation, a novel approach has been developed for the calibration of a network of non-overlapping DWSCs in terms of their ground plane homographies, which can then be used for localising objects. In the proposed approach, a robot travels through the camera network while updating its position in a global coordinate frame, which it broadcasts to the cameras. The cameras use this, along with the image plane location of the robot, to compute a mapping from their image planes to the global coordinate frame. This is combined with an occupancy map generated by the robot during the mapping process to localised objects moving within the network. In addition, to deal with the problem of object handover between DWSCs of non-overlapping fields of view, a highly-scalable, distributed protocol has been designed. Cameras that follow the proposed protocol transmit object descriptions to a selected set of neighbours that are determined using a predictive forwarding strategy. The received descriptions are then matched at the subsequent camera on the object's path using a probability maximisation process with locally generated descriptions. The second problem of camera placement emerges naturally when these pervasive devices are put into real use. The locations, orientations, lens types etc. of the cameras must be chosen in a way that the utility of the network is maximised (e.g. maximum coverage) while user requirements are met. To deal with this, a statistical formulation of the problem of determining optimal camera configurations has been introduced and a Trans-Dimensional Simulated Annealing (TDSA) algorithm has been proposed to effectively solve the problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Novel computer vision techniques have been developed for automatic monitoring of crowed environments such as airports, railway stations and shopping malls. Using video feeds from multiple cameras, the techniques enable crowd counting, crowd flow monitoring, queue monitoring and abnormal event detection. The outcome of the research is useful for surveillance applications and for obtaining operational metrics to improve business efficiency.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This industry magazine article reports on the author's participation in a post-graduate level professional course in multi-camera drama directing conducted by the Australian Film Television & Radio School (AFTRS) in conjunction with 'Blue Heelers'/Network 7 in Melbourne.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Public buildings and large infrastructure are typically monitored by tens or hundreds of cameras, all capturing different physical spaces and observing different types of interactions and behaviours. However to date, in large part due to limited data availability, crowd monitoring and operational surveillance research has focused on single camera scenarios which are not representative of real-world applications. In this paper we present a new, publicly available database for large scale crowd surveillance. Footage from 12 cameras for a full work day covering the main floor of a busy university campus building, including an internal and external foyer, elevator foyers, and the main external approach are provided; alongside annotation for crowd counting (single or multi-camera) and pedestrian flow analysis for 10 and 6 sites respectively. We describe how this large dataset can be used to perform distributed monitoring of building utilisation, and demonstrate the potential of this dataset to understand and learn the relationship between different areas of a building.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three-dimensional models which contain both geometry and texture have numerous applications such as urban planning, physical simulation, and virtual environments. A major focus of computer vision (and recently graphics) research is the automatic recovery of three-dimensional models from two-dimensional images. After many years of research this goal is yet to be achieved. Most practical modeling systems require substantial human input and unlike automatic systems are not scalable. This thesis presents a novel method for automatically recovering dense surface patches using large sets (1000's) of calibrated images taken from arbitrary positions within the scene. Physical instruments, such as Global Positioning System (GPS), inertial sensors, and inclinometers, are used to estimate the position and orientation of each image. Essentially, the problem is to find corresponding points in each of the images. Once a correspondence has been established, calculating its three-dimensional position is simply a matter of geometry. Long baseline images improve the accuracy. Short baseline images and the large number of images greatly simplifies the correspondence problem. The initial stage of the algorithm is completely local and scales linearly with the number of images. Subsequent stages are global in nature, exploit geometric constraints, and scale quadratically with the complexity of the underlying scene. We describe techniques for: 1) detecting and localizing surface patches; 2) refining camera calibration estimates and rejecting false positive surfels; and 3) grouping surface patches into surfaces and growing the surface along a two-dimensional manifold. We also discuss a method for producing high quality, textured three-dimensional models from these surfaces. Some of the most important characteristics of this approach are that it: 1) uses and refines noisy calibration estimates; 2) compensates for large variations in illumination; 3) tolerates significant soft occlusion (e.g. tree branches); and 4) associates, at a fundamental level, an estimated normal (i.e. no frontal-planar assumption) and texture with each surface patch.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Establishing correspondences among object instances is still challenging in multi-camera surveillance systems, especially when the cameras’ fields of view are non-overlapping. Spatiotemporal constraints can help in solving the correspondence problem but still leave a wide margin of uncertainty. One way to reduce this uncertainty is to use appearance information about the moving objects in the site. In this paper we present the preliminary results of a new method that can capture salient appearance characteristics at each camera node in the network. A Latent Dirichlet Allocation (LDA) model is created and maintained at each node in the camera network. Each object is encoded in terms of the LDA bag-of-words model for appearance. The encoded appearance is then used to establish probable matching across cameras. Preliminary experiments are conducted on a dataset of 20 individuals and comparison against Madden’s I-MCHR is reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a data model for content representation of temporal media in an IP based sensor network. The model is formed by introducing the idea of semantic-role from linguistics into the underlying concepts of formal event representation with the aim of developing a common event model. The architecture of a prototype system for a multi camera surveillance system, based on the proposed model is described. The important aspects of the proposed model are its expressiveness, its ability to model content of temporal media, and its suitability for use with a natural language interface. It also provides a platform for temporal information fusion, as well as organizing sensor annotations by help of ontologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we propose a multi-camera application capable of processing high resolution images and extracting features based on colors patterns over graphic processing units (GPU). The goal is to work in real time under the uncontrolled environment of a sport event like a football match. Since football players are composed for diverse and complex color patterns, a Gaussian Mixture Models (GMM) is applied as segmentation paradigm, in order to analyze sport live images and video. Optimization techniques have also been applied over the C++ implementation using profiling tools focused on high performance. Time consuming tasks were implemented over NVIDIA's CUDA platform, and later restructured and enhanced, speeding up the whole process significantly. Our resulting code is around 4-11 times faster on a low cost GPU than a highly optimized C++ version on a central processing unit (CPU) over the same data. Real time has been obtained processing until 64 frames per second. An important conclusion derived from our study is the scalability of the application to the number of cores on the GPU. © 2011 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ce mémoire s'intéresse à la vision par ordinateur appliquée à des projets d'art technologique. Le sujet traité est la calibration de systèmes de caméras et de projecteurs dans des applications de suivi et de reconstruction 3D en arts visuels et en art performatif. Le mémoire s'articule autour de deux collaborations avec les artistes québécois Daniel Danis et Nicolas Reeves. La géométrie projective et les méthodes de calibration classiques telles que la calibration planaire et la calibration par géométrie épipolaire sont présentées pour introduire les techniques utilisées dans ces deux projets. La collaboration avec Nicolas Reeves consiste à calibrer un système caméra-projecteur sur tête robotisée pour projeter des vidéos en temps réel sur des écrans cubiques mobiles. En plus d'appliquer des méthodes de calibration classiques, nous proposons une nouvelle technique de calibration de la pose d'une caméra sur tête robotisée. Cette technique utilise des plans elliptiques générés par l'observation d'un seul point dans le monde pour déterminer la pose de la caméra par rapport au centre de rotation de la tête robotisée. Le projet avec le metteur en scène Daniel Danis aborde les techniques de calibration de systèmes multi-caméras. Pour son projet de théâtre, nous avons développé un algorithme de calibration d'un réseau de caméras wiimotes. Cette technique basée sur la géométrie épipolaire permet de faire de la reconstruction 3D d'une trajectoire dans un grand volume à un coût minime. Les résultats des techniques de calibration développées sont présentés, de même que leur utilisation dans des contextes réels de performance devant public.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les pays industrialisés comme le Canada doivent faire face au vieillissement de leur population. En particulier, la majorité des personnes âgées, vivant à domicile et souvent seules, font face à des situations à risques telles que des chutes. Dans ce contexte, la vidéosurveillance est une solution innovante qui peut leur permettre de vivre normalement dans un environnement sécurisé. L’idée serait de placer un réseau de caméras dans l’appartement de la personne pour détecter automatiquement une chute. En cas de problème, un message pourrait être envoyé suivant l’urgence aux secours ou à la famille via une connexion internet sécurisée. Pour un système bas coût, nous avons limité le nombre de caméras à une seule par pièce ce qui nous a poussé à explorer les méthodes monoculaires de détection de chutes. Nous avons d’abord exploré le problème d’un point de vue 2D (image) en nous intéressant aux changements importants de la silhouette de la personne lors d’une chute. Les données d’activités normales d’une personne âgée ont été modélisées par un mélange de gaussiennes nous permettant de détecter tout événement anormal. Notre méthode a été validée à l’aide d’une vidéothèque de chutes simulées et d’activités normales réalistes. Cependant, une information 3D telle que la localisation de la personne par rapport à son environnement peut être très intéressante pour un système d’analyse de comportement. Bien qu’il soit préférable d’utiliser un système multi-caméras pour obtenir une information 3D, nous avons prouvé qu’avec une seule caméra calibrée, il était possible de localiser une personne dans son environnement grâce à sa tête. Concrêtement, la tête de la personne, modélisée par une ellipsoide, est suivie dans la séquence d’images à l’aide d’un filtre à particules. La précision de la localisation 3D de la tête a été évaluée avec une bibliothèque de séquence vidéos contenant les vraies localisations 3D obtenues par un système de capture de mouvement (Motion Capture). Un exemple d’application utilisant la trajectoire 3D de la tête est proposée dans le cadre de la détection de chutes. En conclusion, un système de vidéosurveillance pour la détection de chutes avec une seule caméra par pièce est parfaitement envisageable. Pour réduire au maximum les risques de fausses alarmes, une méthode hybride combinant des informations 2D et 3D pourrait être envisagée.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a real-time multi-camera surveillance system that can be applied to a range of application domains. This integrated system is designed to observe crowded scenes and has mechanisms to improve tracking of objects that are in close proximity. The four component modules described in this paper are (i) motion detection using a layered background model, (ii) object tracking based on local appearance, (iii) hierarchical object recognition, and (iv) fused multisensor object tracking using multiple features and geometric constraints. This integrated approach to complex scene tracking is validated against a number of representative real-world scenarios to show that robust, real-time analysis can be performed. Copyright (C) 2007 Hindawi Publishing Corporation. All rights reserved.