785 resultados para Multi layer perceptron backpropagation neural network


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a methodology to analyze electric power systems transient stability for first swing using a neural network based on adaptive resonance theory (ART) architecture, called Euclidean ARTMAP neural network. The ART architectures present plasticity and stability characteristics, which are very important for the training and to execute the analysis in a fast way. The Euclidean ARTMAP version provides more accurate and faster solutions, when compared to the fuzzy ARTMAP configuration. Three steps are necessary for the network working, training, analysis and continuous training. The training step requires much effort (processing) while the analysis is effectuated almost without computational effort. The proposed network allows approaching several topologies of the electric system at the same time; therefore it is an alternative for real time transient stability of electric power systems. To illustrate the proposed neural network an application is presented for a multi-machine electric power systems composed of 10 synchronous machines, 45 buses and 73 transmission lines. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present the results of the use of a methodology for multinodal load forecasting through an artificial neural network-type Multilayer Perceptron, making use of radial basis functions as activation function and the Backpropagation algorithm, as an algorithm to train the network. This methodology allows you to make the prediction at various points in power system, considering different types of consumers (residential, commercial, industrial) of the electric grid, is applied to the problem short-term electric load forecasting (24 hours ahead). We use a database (Centralised Dataset - CDS) provided by the Electricity Commission de New Zealand to this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grinding is a workpiece finishing process for advanced products and surfaces. However, the constant friction between workpiece and grinding wheel causes the latter to lose its sharpness, thereby impairing the result of the grinding process. When this occurs, the dressing process is essential to sharpen the worn grains of the grinding wheel. The dressing conditions strongly influence the performance of the grinding operation; hence, monitoring them throughout the process can increase its efficiency. The purpose of this study was to classify the wear condition of a single-point dresser using intelligent systems whose inputs were obtained by digitally processing acoustic emission signals. Two multilayer perceptron (MLP) neural networks were compared for their classification ability, one using the root mean square (RMS) statistics and another the ratio of power (ROP) statistics as input. In this study, it was found that the harmonic content of the acoustic emission signal is influenced by the condition of the dresser, and that the condition of the tool under study can be classified by using the aforementioned statistics to feed a neural network. © IFAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Geologia Regional - IGCE

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term potentiation in the neonatal rat rnbarrel cortex in vivo rnLong-term potentiation (LTP) is important for the activity-dependent formation of early cortical circuits. In the neonatal rodent barrel cortex LTP has been so far only studied in vitro. I combined voltage-sensitive dye imaging with extracellular multi-electrode recordings to study whisker stimulation-induced LTP for both the slope of field potential and the number of multi-unit activity in the whisker-to-barrel cortex pathway of the neonatal rat barrel cortex in vivo. Single whisker stimulation at 2 Hz for 10 min induced an age-dependent expression of LTP in postnatal day (P) 0 to P14 rats with the strongest expression of LTP at P3-P5. The magnitude of LTP was largest in the stimulated barrel-related column, smaller in the surrounding septal region and no LTP could be observed in the neighboring barrel. Current source density analyses revealed an LTP-associated increase of synaptic current sinks in layer IV / lower layer II/III at P3-P5 and in the cortical plate / upper layer V at P0-P1. This study demonstrates for the first time an age-dependent and spatially confined LTP in the barrel cortex of the newborn rat in vivo. These activity-dependent modifications during the critical period may play an important role in the development and refinement of the topographic map in the barrel cortex. (An et al., 2012)rnEarly motor activity triggered by gamma and spindle bursts in neonatal rat motor cortexrnSelf-generated neuronal activity generated in subcortical regions drives early spontaneous motor activity, which is a hallmark of the developing sensorimotor system. However, the neuronal activity patterns and functions of neonatal primary motor cortex (M1) in the early movements are still unknown. I combined voltage-sensitive dye imaging with simultaneous extracellular multi-electrode recordings in the neonatal rat S1 and M1 in vivo. At P3-P5, gamma and spindle bursts observed in M1 could trigger early paw movements. Furthermore, the paw movements could be also elicited by the focal electrical stimulation of M1 at layer V. Local inactivation of M1 could significantly attenuate paw movements, suggesting that the neonatal M1 operates in motor mode. In contrast, the neonatal M1 can also operate in sensory mode. Early spontaneous movements and sensory stimulations of paw trigger gamma and spindle bursts in M1. Blockade of peripheral sensory input from the paw completely abolished sensory evoked gamma and spindle bursts. Moreover, both sensory evoked and spontaneously occurring gamma and spindle bursts mediated interactions between S1 and M1. Accordingly, local inactivation of the S1 profoundly reduced paw stimulation-induced and spontaneously occurring gamma and spindle bursts in M1, indicating that S1 plays a critical role in generation of the activity patterns in M1. This study proposes that both self-generated and sensory evoked gamma and spindle bursts in M1 may contribute to the refinement and maturation of corticospinal and sensorimotor networks required for sensorimotor coordination.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that one of the obstacles to effective forecasting of exchange rates is heteroscedasticity (non-stationary conditional variance). The autoregressive conditional heteroscedastic (ARCH) model and its variants have been used to estimate a time dependent variance for many financial time series. However, such models are essentially linear in form and we can ask whether a non-linear model for variance can improve results just as non-linear models (such as neural networks) for the mean have done. In this paper we consider two neural network models for variance estimation. Mixture Density Networks (Bishop 1994, Nix and Weigend 1994) combine a Multi-Layer Perceptron (MLP) and a mixture model to estimate the conditional data density. They are trained using a maximum likelihood approach. However, it is known that maximum likelihood estimates are biased and lead to a systematic under-estimate of variance. More recently, a Bayesian approach to parameter estimation has been developed (Bishop and Qazaz 1996) that shows promise in removing the maximum likelihood bias. However, up to now, this model has not been used for time series prediction. Here we compare these algorithms with two other models to provide benchmark results: a linear model (from the ARIMA family), and a conventional neural network trained with a sum-of-squares error function (which estimates the conditional mean of the time series with a constant variance noise model). This comparison is carried out on daily exchange rate data for five currencies.