928 resultados para Motion study
Resumo:
This paper describes a study of the cursor trajectories of motion-impaired users in "point and click" interactions. A characteristic of cursor movement is proposed that aims to capture the spatial distribution of cursor movement about a target. This characteristic indicates that users often exhibit increased cursor movement in the vicinity of the target, have more difficulty performing the "clicking" part of the interaction as compared to the navigation part, and tend to navigate directly toward the target during the middle portion of the cursor trajectory. The implications of these characteristic behaviours on interface design are discussed.
Resumo:
Verbal communication is essential for human society and human civilization. Non-verbal communication, on the other hand, is more widely used not only by human but also other kind of animals, and the content of information is estimated even larger than the verbal communication. Among the non-verbal communication mutual motion is the simplest and easiest to study experimentally and analytically. We measured the power spectrum of the hand velocity in various conditions and clarified the following points on the feed-back and feed- forward mechanism as basic knowledge to understand the condition of good communication.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion.
Resumo:
The purpose of the study was to examine any differences that exist in the quality of motions employed by pianists when they are sight-reading versus performing repertoire. A secondary question of interest was whether or not an improvement in the efficiency of motion could be observed between two sight-reading trials of the same musical excerpt. While data analysis for the full study is ongoing, the following results from a case study are illustrative.
Resumo:
An analysis methodology is presented as well as a comparison of results obtained from vortex-induced motion (VIM) model tests of the MonoGoM platform, a monocolumn floating unit designed for the Gulf of Mexico. The choice of scale between the model and the platform in which the tests took place was a very important issue that took into account the basin dimensions and mooring design. The tests were performed in three different basins: the IPT Towing Tank in Brazil (Sept. 2005), the NMRI Model Ship Experimental Towing Tank in Japan (Mar. 2007), and the NMRI Experimental Tank in Japan (Jun. 2008). The purpose is to discuss the most relevant issues regarding the concept, execution, and procedures to comparatively analyze the results obtained from VIM model tests, such as characteristic motion amplitudes, motion periods, and forces. The results pointed out the importance of considering the 2DOF in the model tests, i.e., the coexistence of the motions in both in-line and transverse directions. The approach employed in the tests was designed to build a reliable data set for comparison with theoretical and numerical models for VIM prediction, especially that of monocolumn platforms. [DOI: 10.1115/1.4003494]
Resumo:
The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.
Resumo:
BACKGROUND Knee pain is associated with radiographic knee osteoarthritis, but the relationships between physical examination, pain and radiographic features are unclear. OBJECTIVE To examine whether deficits in knee extension or flexion were associated with radiographic severity and pain during clinical examination in persons with knee pain or radiographic features of osteoarthritis. DESIGN Cross-sectional data of the Somerset and Avon Survey of Health (SASH) cohort study. METHODS Participants with knee pain or radiographic features of osteoarthritis were included. We assessed the range of passive knee flexion and extension, pain on movement and Kellgren and Lawrence (K/L) grades. Odds ratios were calculated for the association between range of motion and pain as well as radiographic severity. RESULTS/FINDINGS Of 1117 participants with a clinical assessment, 805 participants and 1530 knees had complete data and were used for this analysis. Pain and radiographic changes were associated with limited range of motion. In knees with pain on passive movement, extension and flexion were reduced per one grade of K/L by -1.4° (95% CI -2.2 to -0.5) and -1.6° (95% CI -2.8 to -0.4), while in knees without pain the reduction was -0.3° (95% CI -0.6 to -0.1) (extension) and -1.1° (-1.8 to -0.3) (flexion). The interaction of pain with K/L was significant (p = 0.021) for extension but not for flexion (p = 0.333). CONCLUSIONS Pain during passive movement, which may be an indicator of reversible soft-tissue changes, e.g., reversible through physical therapy, is independently associated with reduced flexion and extension of the knee.
Resumo:
Laparoscopic instrument tracking systems are a key element in image-guided interventions, which requires high accuracy to be used in a real surgical scenario. In addition, these systems are a suitable option for objective assessment of laparoscopic technical skills based on instrument motion analysis. This study presents a new approach that improves the accuracy of a previously presented system, which applies an optical pose tracking system to laparoscopic practice. A design enhancement of the artificial markers placed on the laparoscopic instrument as well as an improvement of the calibration process are presented as a means to achieve more accurate results. A technical evaluation has been performed in order to compare the accuracy between the previous design and the new approach. Results show a remarkable improvement in the fluctuation error throughout the measurement platform. Moreover, the accumulated distance error and the inclination error have been improved. The tilt range covered by the system is the same for both approaches, from 90º to 7.5º. The relative position error is better for the new approach mainly at close distances to the camera system
Resumo:
Purpose: To compare assessment capabilities of a motion analysis tool against a validated checklist during laparoscopic training.
Resumo:
En este proyecto, se presenta un informe técnico sobre la cámara Leap Motion y el Software Development Kit correspondiente, el cual es un dispositivo con una cámara de profundidad orientada a interfaces hombre-máquina. Esto es realizado con el propósito de desarrollar una interfaz hombre-máquina basada en un sistema de reconocimiento de gestos de manos. Después de un exhaustivo estudio de la cámara Leap Motion, se han realizado diversos programas de ejemplo con la intención de verificar las capacidades descritas en el informe técnico, poniendo a prueba la Application Programming Interface y evaluando la precisión de las diferentes medidas obtenidas sobre los datos de la cámara. Finalmente, se desarrolla un prototipo de un sistema de reconocimiento de gestos. Los datos sobre la posición y orientación de la punta de los dedos obtenidos de la Leap Motion son usados para describir un gesto mediante un vector descriptor, el cual es enviado a una Máquina Vectores Soporte, utilizada como clasificador multi-clase.