219 resultados para Mortars


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Digital light, fluorescence and electron microscopy in combination with wavelength-dispersive spectroscopy were used to visualize individual polymers, air voids, cement phases and filler minerals in a polymer-modified cementitious tile adhesive. In order to investigate the evolution and processes involved in formation of the mortar microstructure, quantifications of the phase distribution in the mortar were performed including phase-specific imaging and digital image analysis. The required sample preparation techniques and imaging related topics are discussed. As a form of case study, the different techniques were applied to obtain a quantitative characterization of a specific mortar mixture. The results indicate that the mortar fractionates during different stages ranging from the early fresh mortar until the final hardened mortar stage. This induces process-dependent enrichments of the phases at specific locations in the mortar. The approach presented provides important information for a comprehensive understanding of the functionality of polymer-modified mortars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of polymer modification on the physical properties of cementitious mortars is investigated using a multimethod approach. Special emphasis is put on the identification and quantification of different polymer components within the cementitious matrix. With respect to thin-bed applications, particularly tile adhesives, the spatial distributions of latex, cellulose ether (CE), polyvinyl alcohol (PVA), and cement hydration products can be quantified. It is shown that capillary forces and evaporation induce water fluxes in the interconnected part of the pore system, which transport CE, PVA, and cement ions to the mortar interfaces. In contrast, the distribution of latex remains homogeneous. In combination with results from qualitative experiments, the quantitative findings allow reconstruction of the evolution from fresh to hardened mortar, including polymer film formation, cement hydration, and water migration. The resulting microstructure and the failure modes can be correlated with the final adhesive strength of the tile adhesive. The results demonstrate that skinning prior to tile inlaying can strongly reduce wetting properties of the fresh mortar and lower final adhesive strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La envolvente de la edificación es la responsable de equilibrar el intercambio energético entre el interior y el exterior, por lo tanto cualquier actuación encaminada a la reducción del consumo energético ha de establecer, como uno de sus objetivos prioritarios, la mejora del comportamiento de la misma. Las edificaciones anteriores a 1940 constituyen la mayor parte de las existentes en áreas rurales y centros urbanos. En ellas, la repercusión de la fachada sobre las transmitancias globales pone de manifiesto la necesidad de intervención. Sin embargo, su elevada inercia térmica y los importantes saltos térmicos característicos de gran parte de España plantean la importancia de que aquélla se efectúe por el exterior. A tal respecto, la falta de disponibilidad de espesor suficiente para implantar sistemas tipo SATE deriva en que, frecuentemente, la única solución viable sea la de aislar por el interior perdiendo con ello la capacidad de acumulación térmica del muro y con el asociado riesgo de condensaciones. La amplia tradición en el empleo de revestimientos, especialmente en base de cal, permiten que éstos sean utilizados no sólo como elemento estético o de protección de la obra de fábrica antigua sino también para la mejora del comportamiento térmico del soporte, si se aprovecha el mecanismo de transmisión térmica por radiación. Éste es el objetivo de la presente Tesis Doctoral en la que se estudia la modificación de las propiedades radiantes de los morteros de revestimiento para la mejora de la eficiencia energética de las construcciones históricas, principalmente las constituidas por muros monolíticos, aunque podría ser de aplicación a otro tipo de construcciones compuestas por diversas capas. Como punto de partida, se estudió y revisó la documentación disponible sobre las investigaciones de las tres áreas científico-tecnológicas que convergen en la Tesis Doctoral: rehabilitación, material y comportamiento térmico, a partir de lo cual se comprobó la inexistencia de estudios similares al objeto de la presente Tesis Doctoral. Complementariamente, se analizaron los revestimientos en lo concerniente a los materiales que los constituyen, la composición de las mezclas y características de cada una de las capas así como al enfoque que, desde el punto de vista térmico, se estimaba más adecuado para la obtención de los objetivos propuestos. Basándonos en dichos análisis, se preseleccionaron ochenta materiales que fueron ensayados en términos de reflectancia y emisividad para elegir cuatro con los que se continuó la investigación. Éstos, junto con la cal elegida para la investigación y el árido marmóreo característico de la última capa de revestimiento, fueron caracterizados térmicamente, de forma pormenorizada, así como química y físicamente. Los fundamentos teóricos y los estudios preliminares desarrollados con distintos materiales, en estado fresco y endurecido, fueron empleados en la dosificación de componentes de las mezclas, en dos proporciones distintas, para el estudio del efecto del agregado. Éstas se ensayaron en estado fresco, para comprobar su adecuación de puesta en obra y prever su VI adherencia al soporte, así como en estado endurecido a 28 y 90 días de curado, para conocer las propiedades que permitieran prever su compatibilidad con aquél y estimar el alcance de la reducción de transferencias térmicas lograda. Además, se estudiaron las características generales de las mezclas que sirvieron para establecer correlaciones entre distintas propiedades y entender los resultados mecánicos, físicos (comportamiento frente al agua) y energéticos. Del estudio conjunto de las distintas propiedades analizadas se propusieron dos mezclas, una blanca y otra coloreada, cuyas características permiten garantizar la compatibilidad con la obra de fábrica antigua, desde el punto de vista físico y mecánico, y preservar la autenticidad de los revestimientos, en cuanto a la técnica de aplicación tradicional en sistemas multicapa. El comportamiento térmico de las mismas, sobre una obra de fábrica de 40 cm de espesor, se estimó, en estado estacionario y pseudo-transitorio, demostrándose reducciones del flujo térmico entre 16-48%, en condiciones de verano, y entre el 6-11%, en invierno, en función de la coloración y de la rugosidad de la superficie, en comparación con el empleo de la mezcla tradicional. Por lo que, se constata la viabilidad de los materiales compuestos propuestos y su adecuación al objetivo de la investigación. VII ABSTRACT The envelope is responsible for balancing the energy exchange between the inside and outside in buildings. For this reason, any action aimed at reducing energy consumption must establish, as one of its key priorities, its improvement. In rural areas and urban centers, most of the constructions were built before 1940. In them, the impact of the façade on the global transmittance highlights the need for intervention. However, its high thermal inertia and fluctuation of temperatures in the majority of Spain bring up that it should be placed outside the insulation. In this regard, the lack of availability of enough thickness to implement systems such as ETICS results in that often the only viable solution is to isolate the interior, losing thereby the wall’s heat storage capacity with the associated risk of condensation. The tradition in the use of renders, especially lime-based, allows us to use them not only as an aesthetic element or to protect the ancient masonry, but also for improved thermal performance of the support by taking advantage of the heat transfer mechanism by radiation. This is the aim of this Doctoral Thesis in which the modification of the radiative properties of lime mortars for renders to improve the energy efficiency of historic buildings, mainly composed of monolithic walls, is studied, although it could be applied to other structures composed of several layers. As a starting point, the available literature in the three scientific-technological areas that converge at the Doctoral Thesis: rehabilitation, material and thermal behaviour, was reviewed, and confirmed the absence of researches similar to this Doctoral Thesis. Additionally, the renders were studied with regard to the materials that constitute them, the composition of the mixtures and the characteristics of each layer, as well as to the approach which, from a thermal point of view, was deemed the most suitable for achieving the objectives sets. Based on thre aforementioned analysis, eighty materials tested in terms of reflectance and emissivity were pre-selected, to choose four with which the research was continued. Common marble sand, used in the last layer of the renders, together with the appointed materials and hydrated lime were characterized thermally, in detail, as well as chemically and physically. The theoretical bases and preliminary studies with different materials, in fresh and hardened state, were used in the dosage of the composition of the mixtures. In order to study their effect they were used in two different proportions, that is, ten mixtures in total. These were tested in their fresh state to evaluate their setting-up suitability and foresee their adhesion to the support, as well as in their hardened state, at 28 and 90 days of curing, to establish the properties which enabled us to anticipate their compatibility with the old masonry walls and estimate the scope of the reduction of heat transfers achieved. In addition, the general characteristics of the mixtures used to establish correlations and to understand the mechanical, physical and energy results were studied. Two mixtures, one white and one colored, were proposed as the result of the different properties analysed, whose characteristics allow the guarantee of mechanical and physical compatibility VIII with the old masonry and preserve the authenticity of the renders. The thermal behavior of both, applied on a masonry wall 40 cm thick, was estimated at a steady and pseudo-transient state, with heat flow reductions between 16-48% during summertime and 6-11% during wintertime, depending on the color and surface roughness, compared to the use of the traditional mixture. So, the viability of the proposed composite materials and their fitness to the aim of the research are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Laboratory of Materials seminar is an optional course offered to students in the School of Architecture in Madrid. It is taught during 35 class hours in the laboratory of materials distributed in two hours and forty minutes weekly. One of the working lines is the preparation of traditional mortars made by students groups, each one of 4 or 5 members. It is basically a practical course, and students have to prepare a group of tests pieces in order to confirm the initial hypothesis, or when needed, make innovations. The test pieces are of 150mmx150mmx10mm and applied to big size hollow bricks, prismatic test pieces of 40mmx40mmx160mm to apply physical and mechanical tests and brick wallings of varied dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Around ten years ago investigation of technical and material construction in Ancient Roma has advanced in favour to obtain positive results. This process has been directed to obtaining some dates based in chemical composition, also action and reaction of materials against meteorological assaults or post depositional displacements. Plenty of these dates should be interpreted as a result of deterioration and damage in concrete material made in one landscape with some kind of meteorological characteristics. Concrete mixture like calcium and gypsum mortars should be analysed in laboratory test programs, and not only with descriptions based in reference books of Strabo, Pliny the Elder or Vitruvius. Roman manufacture was determined by weather condition, landscape, natural resources and of course, economic situation of the owner. In any case we must research the work in every facts of construction. On the one hand, thanks to chemical techniques like X-ray diffraction and Optical microscopy, we could know the granular disposition of mixture. On the other hand if we develop physical and mechanical techniques like compressive strength, capillary absorption on contact or water behaviour, we could know the reactions in binder and aggregates against weather effects. However we must be capable of interpret these results. Last year many analyses developed in archaeological sites in Spain has contributed to obtain different point of view, so has provide new dates to manage one method to continue the investigation of roman mortars. If we developed chemical and physical analysis in roman mortars at the same time, and we are capable to interpret the construction and the resources used, we achieve to understand the process of construction, the date and also the way of restoration in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with fly ash and limestone filler. After 3, 6, 12, 24, 36, 48 and 60 months of exposure, three or four specimens of each cement type were removed from the pond and washed with water. Their compressive strength and microstructure (X-ray diffraction, mercury intrusion pore-symmetry, thermal analysis and scanning electron microscopy) were then measured. Sulphate-resistant Portland cement (SR-PC), found to be more susceptible to degradation due to its greater proportion of macro-pores and increased total porosity, was found not to be suitable for use with livestock. After 60 months of immersion in the pig slurry medium, CEM II-A (40.3%) mortar retained the greatest compressive strength. Mortars with less than 20% replacement of cement by fly ash were found to be the most durable, with the most suitable mechanical behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work focuses on gypsum mortar manufactu red in traditional kilns and used historically as exterior rendering. A documentation survey has been carried out followed by an experimental analysis using geological techniques. Conclusion shows that traditional gypsum is formed by anhydrite and inert active impurities (crystalline amorphous silica; cl ays and hydraulic phases) produced by the craft manufacture process of the system, in a kiln with a 200ºC to 1000ºC temperature interval, and continuo us fuel supply during 36 hours. Anhydrite together wit h the hydraulic phases set at consecutive time peri ods and with the presence of moisture improve the physi cal and mechanical properties of the final product. The hydration system is of great complexity and sho ws a very slow kinetics when in presence of impurities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents the main experimental results obtained from the study of plaster test pieces and boards with addition of various volumetric rubber fractions from mechanical grinding of end-of-life tires (ELTs), in three different particle size gradations. It includes a description of the materials employed, and their proportions. The physical and mechanical properties, as well as the thermal conductivity and acoustic insulation properties are analyzed. Experimental results obtained for specimens with addition of recycled rubber are compared with similar ones, carried out on specimens of plaster of identical features without any addition, evaluating the influence of the particle size and mixture proportions. An improvement in thermal and acoustic performance has been obtained as well as a reduction in density, and as a result, some constructive applications for paving and slabs in rehabilitation works are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Passive performance of buildings is nowadays one of the key points, not only for reducing energy consumption of buildings, but also for decreasing “fuel poverty”. Among the constructive systems in buildings, façades are the ones having higher influence on thermal performance in urban spaces. Lime renders are specialized systems which can improve not only the durability of the support but also the thermal properties. According to previous researches, a modification of their radiative properties can reduce thermal fluxes between 24% and 89%. In this paper, the influences of the aggregate content in lime pastes, as well as the nature of the aggregates, colour and roughness, on the visible near and medium infrared reflectance are analyzed. Ten types of aerial lime mortars were prepared and two methods of reflectance determination were performed. Finally, the effect of the resulted reflectance on the constructive systems of façades was analyzed using pseudotime-dependent software, for which an annulation of the thermal fluxes or significant reduction of them can be observed, when modifying the aggregate nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of nano-silica, nano-alumina and binary combinations on surface hardness, resistance to abrasion and freeze-thaw cycle resistance in cement mortars was investigated. The Vickers hardness, the Los Angeles coefficient (LA) and the loss of mass in each of the freeze–thaw cycles to which the samples were subjected were measured. Four cement mortars CEM I 52.5R were prepared, one as control, and the other three with the additions: 5% nano-Si, 5% nano-Al and mix 2.5% n-Si and 2.5% n-Al. Mortars were tested at 7, 28 and 90 d of curing to determine compression strength, total porosity and pore distribution by mercury intrusion porosimetry (MIP) and the relationship between the CSH gel and Portlandite total by thermal gravimetric analysis (TGA). The capillary suction coefficient and an analysis by a scanning electron microscope (SEM) was made. There was a large increase in Vickers surface hardness for 5% n-Si mortar and a slight increase in resistance to abrasion. No significant difference was found between the mortars with nano-particles, whose LA was about 10.8, classifying them as materials with good resistance to abrasion. The microstructure shows that the addition of n-Si in mortars refines their porous matrix, increases the amount of hydrated gels and generates significant changes in both Portlandite and Ettringite. This produced a significant improvement in freeze–thaw cycle resistance. The effect of n-Al on mortar was null or negative with respect to freeze–thaw cycle resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in mechanical properties of portland cement mortars due to the addition of carbon fibres (CF) to the mix have been studied. Compression and flexural strengths have been determined in relation to the amount of fibres added to the mix, water/binder ratio, curing time and porosity. Additionally, the corrosion level of reinforcing steel bars embedded in portland cement mortars containing CF and silica fume (SF) have also been investigated and reinforcing steel corrosion rates have been determined. As a consequence of the large concentration of oxygen groups in CF surface, a good interaction between the CF and the water of the mortar paste is to be expected. A CF content of 0.5% of cement weight implies an optimum increase in flexural strength and an increase in embedded steel corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

San Roque church (Campeche, Mexico) was built at the end of the 17th century with a micritic limestone and lime mortar in baroque style. In 2005 the church exhibited heavy biodeterioration associated with the development of extensive dark green phototrophic-based biofilms. Several cyanobacteria belonging to the order Chroococcales and lichenized fungi (Toninia nordlandica, Lobaria quercizans, Lecanora subcarnea, Cystocoleus ebeneus) were predominant in the dark biofilm samples, as revealed by DNA-based molecular techniques. In 2009, a cleaning and restoration intervention was adopted; however, after few months, microbial recolonization started to be noticeable on the painted church walls, representing an early phototrophic-based recolonization. According to molecular analysis, scanning electron microscopy observations and digital image analysis of cross sections, new phototrophic-based colonization, composed of cyanobacteria and bryophytes, developed mainly beneath the restored mortars. The intrinsic properties of the mortars, the tropical climate of Campeche and the absence of a biocide treatment in the restoration protocol influenced the recolonization of the church façades and enhanced the overall rate of deterioration in a short-term period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary and ternary combinations of sewage sludge ash (SSA) with marble dust (MD), fly ash (FA) and rice husk ash (RHA) as replacement in Portland cement pastes, were assessed. Several tests were carried out at different curing ages: thermogravimetry, density, water absorption, ultrasonic pulse velocity and mechanical strengths. Pozzolanic effects of the mineral admixtures, densities similar to control sample and improved absorptions when combining waste materials were identified. In general, the compressive strength reaches or exceeds the cement strength class, and blending SSA, FA and RHA (30% cement replacement) increase of strength by 9%, compared to the control sample, was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the microstructure of mortars made with an ordinary Portland cement and slag cement has been studied. These mortars were exposed to four different constant temperature and relative humidity environments during a 180-day period. The microstructure has been studied using impedance spectroscopy, and mercury intrusion porosimetry as a contrast technique. The impedance spectroscopy parameters make it possible to analyze the evolution of the solid fraction formation for the studied mortars and their results are confirmed with those obtained using mercury intrusion porosimetry. The development of the pore network of mortars is affected by the environment. However, slag cement mortars are more influenced by temperature while the relative humidity has a greater influence on the OPC mortars. The results show that slag cement mortars hardened under non-optimal environments have a more refined microstructure than OPC mortars for the studied environmental conditions.