910 resultados para Morphological plasticity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human-induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer-spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948-2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Divergent selection acting on several different traits that cause multidimensional shifts are supposed to promote speciation, but the outcome of this process is highly dependent on the balance between the strength of selection vs. gene flow. Here, we studied a pair of sister species of Lake Victoria cichlids at a location where they hybridize and tested the hypothesis that divergent selection acting on several traits can maintain phenotypic differentiation despite gene flow. To explore the possible role of selection we tested for correlations between phenotypes and environment and compared phenotypic divergence (P-ST) with that based on neutral markers (F-ST). We found indications for disruptive selection acting on male breeding colour and divergent selection acting on several morphological traits. By performing common garden experiments we also separated the environmental and heritable components of divergence and found evidence for phenotypic plasticity in some morphological traits contributing to species differences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim The usual hypothesis about the relationship between niche breadth and range size posits that species with the capacity to use a wider range of resources or to tolerate a greater range of environmental conditions should be more widespread. In plants, broader niches are often hypothesized to be due to pronounced phenotypic plasticity, and more plastic species are therefore predicted to be more common. We examined the relationship between the magnitude of phenotypic plasticity in five functional traits, mainly related to leaves, and several measures of abundance in 105 Central European grassland species. We further tested whether mean values of traits, rather than their plasticity, better explain the commonness of species, possibly because they are pre-adapted to exploiting the most common resources. Location Central Europe. Methods In a multispecies experiment with 105 species we measured leaf thickness, leaf greenness, specific leaf area, leaf dry matter content and plant height, and the plasticity of these traits in response to fertilization, waterlogging and shading. For the same species we also obtained five measures of commonness, ranging from plot-level abundance to range size in Europe. We then examined whether these measures of commonness were associated with the magnitude of phenotypic plasticity, expressed as composite plasticity of all traits across the experimental treatments. We further estimated the relative importance of trait plasticity and trait means for abundance and geographical range size. Results More abundant species were less plastic. This negative relationship was fairly consistent across several spatial scales of commonness, but it was weak. Indeed, compared with trait means, plasticity was relatively unimportant for explaining differences in species commonness. Main conclusions Our results do not indicate that larger phenotypic plasticity of leaf morphological traits enhances species abundance. Furthermore, possession of a particular trait value, rather than of trait plasticity, is a more important determinant of species commonness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to respond plastically to the environment has allowed amphibians to evolve a response to spatial and temporal variation in predation threat (Benard 2004). Embroys exposed to egg predation are expected to hatch out earlier than their conspecifics. Larval predation can induce a suite of phenotypic changes including growing a larger tail area. When presented with cues from both egg and larval predators, embryos are expected to respond to the egg predator by hatching out earlier because the egg predator presents an immediate threat. However, hatching early may be costly in the larval environment in terms of development, morphology, and/or behavior. We created a laboratory experiment in which we exposed clutches of spotted salamander (Ambystoma maculatum) eggs to both egg (caddisfly larvae) and larval (A. opacum) predators to test this hypothesis. We recorded hatching time and stage and took developmental and morphological data of the animals a week after hatching. Larvae were entered into lethal predation trials with a larval predatory sunfish (Lepomis sp.) in order to study behavior. We found that animals exposed to the egg predator cues hatched out earlier and at earlier developmental stages than conspecifics regardless of whether there was a larval predator present. Animals exposed to larval predator cues grew relatively larger tails and survived longer in the lethal predation trials. However the group exposed to both predators showed a cost of early hatching in terms of lower tail area and shorter survival time in predation trials. The morphological and developmental effects measured of hatching plasticity were transient as there were no developmental or morphological differences between the treatment groups at metamorphosis. Hatching plasticity may be transient but it is important to the development and survival of many amphibians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cell adhesion molecules (CAMs) are known to be involved in a variety of developmental processes that play key roles in the establishment of synaptic connectivity during embryonic development, but recent evidence implicates the same molecules in synaptic plasticity of the adult. In the present study, we have used neural CAM (NCAM)-deficient mice, which have learning and behavioral deficits, to evaluate NCAM function in the hippocampal mossy fiber system. Morphological studies demonstrated that fasciculation and laminar growth of mossy fibers were strongly affected, leading to innervation of CA3 pyramidal cells at ectopic sites, whereas individual mossy fiber boutons appeared normal. Electrophysiological recordings performed in hippocampal slice preparations revealed that both basal synaptic transmission and two forms of short-term plasticity, i.e., paired-pulse facilitation and frequency facilitation, were normal in mice lacking all forms of NCAM. However, long-term potentiation of glutamatergic excitatory synapses after brief trains of repetitive stimulation was abolished. Taken together, these results strongly suggest that in the hippocampal mossy fiber system, NCAM is essential both for correct axonal growth and synaptogenesis and for long-term changes in synaptic strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic plasticity, the ability of a trait to change as a function of the environment, is central to many ideas in evolutionary biology. A special case of phenotypic plasticity observed in many organisms is mediated by their natural predators. Here, we used a predator-prey system of dragonfly larvae and tadpoles to determine if predator-mediated phenotypic plasticity provides a novel way of surviving in the presence of predators (an innovation) or if it represents a simple extension of the way noninduced tadpoles survive predation. Tadpoles of Limnodynastes peronii were raised in the presence and absence of predation, which then entered a survival experiment. Induced morphological traits, primarily tail height and tail muscle height, were found to be under selection, indicating that predator-mediated phenotypic plasticity may be adaptive. Although predator-induced animals survived better, the multivariate linear selection gradients were similar between the two tadpole groups, suggesting that predator-mediated phenotypic plasticity is an extension of existing survival strategies. In addition, nonlinear selection gradients indicated a cost of predator-induced plasticity that may limit the ability of phenotypic plasticity to enhance survival in the presence of predators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phenotypic differences within a species significantly contribute to the variation we see among plants and animals. Plasticity as a concept helps us to understand some of this variation. Phenotypic plasticity plays a significant role in multiple ecological and evolutionary processes. Because plasticity can be driven by the environment it is more likely to produce beneficial alternative phenotypes than rare and often deleterious genetic mutations. Furthermore, differences in phenotypes that arise in response to the environment can affect multiple individuals from the same population (or entire populations) simultaneously and are therefore of greater evolutionary significance. This allows similar, beneficial alternative phenotypes to increase quickly within a single generation and allow new environments to produce and select for new phenotypes instantly. The direction of the present thesis is to increase our understanding of how phenotypic plasticity, coupled with contrasting environmental conditions, can produce alternative phenotypes within a population. Plasticity provides a source of variation for natural selection to act upon, and may lead to genetic isolation as a by-product. For example, there are multiple cases of polymorphic populations of fish, where groups belonging to multiple isolated gene pools, have arisen in sympatry. Here it is shown that although plasticity is important in sympatric speciation events, plasticity alone is not responsible for the frequency in which sympatric polymorphic populations occur. The most frequently observed differences among sympatric polymorphic populations are morphological differences associated with parts of the anatomy used in the detection, handling and capture of prey. Moreover, it is shown here that there are physiological effects associated with foraging on alternative prey that may significantly contribute towards ecological speciation. It is also shown in this study that anthropogenic abiotic factors can disrupt developmental processes during early ontogeny, significantly influencing morphology, and therefore having ecological consequences. Phenotypic structuring in postglacial fish is most frequently based around a divergence towards either pelagic or littoral benthic foraging specialisms. Divergences that deviate from this pattern are of greater scientific interest as they increase our understanding of how evolutionary processes and selection pressures work. Here we describe a rare divergence not based around the typical pelagic/littoral benthic foraging specialisms. Finally, in this study, the effectiveness of local level conservation policy shows that species of fish which are highly variable in their life history strategies are harder to effectively manage and often poorly represented at a local level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To measure latitude-related body size variation in field-collected Paropsis atomaria Olivier (Coleoptera: Chrysomelidae) individuals and to conduct common-garden experiments to determine whether such variation is due to phenotypic plasticity or local adaptation. Location Four collection sites from the east coast of Australia were selected for our present field collections: Canberra (latitude 35°19' S), Bangalow (latitude 28°43' S), Beerburrum (latitude 26°58' S) and Lowmead (latitude 24°29' S). Museum specimens collected over the past 100 years and covering the same geographical area as the present field collections came from one state, one national and one private collection. Methods Body size (pronotum width) was measured for 118 field-collected beetles and 302 specimens from collections. We then reared larvae from the latitudinal extremes (Canberra and Lowmead) to determine whether the size cline was the result of phenotypic plasticity or evolved differences (= local adaptation) between sites. Results Beetles decreased in size with increasing latitude, representing a converse Bergmann cline. A decrease in developmental temperature produced larger adults for both Lowmead (low latitude) and Canberra (high latitude) individuals, and those from Lowmead were larger than those from Canberra when reared under identical conditions. Main conclusions The converse Bergmann cline in P. atomaria is likely to be the result of local adaptation to season length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of object-based approaches to the problem of extracting vegetation information from images requires accurate delineation of individual tree crowns. This paper presents an automated method for individual tree crown detection and delineation by applying a simplified PCNN model in spectral feature space followed by post-processing using morphological reconstruction. The algorithm was tested on high resolution multi-spectral aerial images and the results are compared with two existing image segmentation algorithms. The results demonstrate that our algorithm outperforms the other two solutions with the average accuracy of 81.8%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In paper has been to investigate the morphological patterns and kinetics of PDMS spreading on silicon wafer using combination of techniques like ellipsometry, atomic force microscope (AFM), scanning electron microscope (SEM) and optical microscopy. A macroscopic silicone oil drops as well as PDMS water based emulsions were studied after deposition on a flat surface of silicon wafer in air, water and vacuum. our own measurements using an imaging ellipsometer, which also clearly shows the presence of a precursor film. The diffusion constant of this film, measured with a 60 000 cS PDMS sample spreading on a hydrophilic silicon wafer, is Df = 1.4  10-11 m2/s. Regardless of their size, density and method of deposition, droplets on both types of wafer (hydrophilic and hydrophobic) flatten out over a period of many hours, up to 3 days. During this process neighbouring droplets may coalesce, but there is strong evidence that some of the PDMS from the droplets migrates into a thin, continuous film that covers the surface in between droplets. The thin film appears to be ubiquitous if there has been any deposition of PDMS. However, this statement needs further verification. One question is whether the film forms immediately after forced drying, or whether in some or all cases it only forms by spreading from isolated droplets as they slowly flatten out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due in no small part to an increasing need to augment existing water purification strategies, the synthesis of titania photocatalysts has been under considerable examination. However, in order to make the use of titania photocatalysts commercially viable there needs to be an increase in the efficiency of the catalysts while decreasing the potential toxicity. Due to its high porosity and novel optical properties, inverse opal titania derived from colloidal crystal templating offers one of the most efficient solutions. While a number of synthesis methods for inverse opal titania have been presented in the literature, the co�]deposition method offers the most effective method of generating the relative large areas of inverse opal material. The factors which affect the codeposition method and the mechanism by which titania inverse opals form in general remain relatively unstudied. This manuscript presents an examination of the morphology of inverse opals generated by the co�]deposition method while proposing a mechanism by which the inverse structures form.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section (‘loopy’). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.