904 resultados para Morphing wing
Resumo:
To investigate the potential for host-parasite coadaptation between bats and their wing mites, we developed microsatellite loci for two species of Spinturnix mites. For Spinturnix myoti, parasite of Myotis myotis, we were able to develop nine polymorphic loci and screened them in 100 mites from five bat colonies. For S. bechsteini, parasite of M. bechsteinii, we developed five polymorphic loci, which were also screened in 100 mites from five bat colonies. In both species, all markers were highly polymorphic (22-46 and 6-23 alleles per locus respectively). The majority of markers for both species exhibited departure from Hardy-Weinberg proportions (8 of 9 and 3 of 5, respectively). One marker pair in S. myoti showed evidence for linkage disequilibrium. As the observed departures from Hardy-Weinberg proportions are most likely a consequence of the biology of the mites, the described microsatellite loci should be useful in studying population genetics and host-parasite dynamics of Spinturnix myoti and Spinturnix bechsteini in relation to their bat hosts.
Resumo:
Wing diagnostic characters for Culex quinquefasciatus and Culex nigripalpus (Diptera, Culicidae). Culex quinquefasciatus and Culex nigripalpus are mosquitoes of public health interest, which can occur sympatrically in urban and semi-urban localities. Morphological identification of these species may be difficult when specimens are not perfectly preserved. In order to suggest an alternative taxonomical diagnosis, wings of these species were comparatively characterized using geometric morphometrics. Both species could be distinguished by wing shape with accuracy rates ranging from 85-100%. Present results indicate that one can identify these species relying only on wing characters when traditional taxonomical characters are not visible.
Resumo:
Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin) (Lepidoptera, Nymphalidae). When the environmental conditions change locally, the organisms and populations may also change in response to the selection pressure, so that the development of individuals may become affected in different degrees. There have been only a few studies in which the patterns of wing morphology variation have been looked into along a latitudinal gradient by means of geometric morphometrics. The aim of this work was to assess the morphologic differentiation of wing among butterfly populations of the species Auca coctei. For this purpose, 9 sampling locations were used which are representative of the distribution range of the butterfly and cover a wide latitudinal range in Chile. The wing morphology was studied in a total of 202 specimens of A. coctei (150 males and 52 females), based on digitization of 17 morphologic landmarks. The results show variation of wing shape in both sexes; however, for the centroid size there was significant variation only in females. Females show smaller centroid size at higher latitudes, therefore in this study the Bergmann reverse rule is confirmed for females of A. coctei. Our study extends morphologic projections with latitude, suggesting that wing variation is an environmental response from diverse origins and may influence different characteristics of the life history of a butterfly.
Resumo:
The invasive spotted-wing Drosophila (Diptera, Drosophilidae) has been found in the city of São Paulo (Brazil). Drosophila suzukii (Matsumura, 1931), the cherry fly or spotted-wing Drosophila, a pest species from the Oriental and southeastern Palaearctic regions belonging to the melanogaster group, invaded the Nearctic and western countries of the Palaearctic regions late last decade (2008) and, more recently (2013), the southern Brazilian states of Rio Grande do Sul and Santa Catarina. Early in 2014 it was reared from blueberries produced in São Joaquim, state of Santa Catarina, that were bought at a São Paulo city grocery store. Despite being a cold-adapted species, after having arrived to the southeastern state of São Paulo, this invasive fly will probably expand its territory to other Brazilian states and South American countries through trade of cultivated soft skin small fruits, such as blueberries and strawberries, as well as naturally through the use of small wild fruits as breeding sites.
Resumo:
The morbidity of bone graft harvesting from the iliac crest has been widely discussed in the literature. For some authors, it is considered to be low and for others relatively high. We report on a case of a fracture of the iliac wing after graft harvesting from the anterior iliac crest despite good surgical technique. This complication is well known and most of these fractures heal uneventfully if treated conservatively. However, if anatomical and technical considerations are respected, the patient could be spared this inconvenience. Based on a literature review, we discuss the procedure's potential complications and how to avoid them in an update.
Resumo:
The wing of the fruit fly, Drosophila melanogaster, with its simple, two-dimensional structure, is a model organ well suited for a systems biology approach. The wing arises from an epithelial sac referred to as the wing imaginal disc, which undergoes a phase of massive growth and concomitant patterning during larval stages. The Decapentaplegic (Dpp) morphogen plays a central role in wing formation with its ability to co-coordinately regulate patterning and growth. Here, we asked whether the Dpp signaling activity scales, i.e. expands proportionally, with the growing wing imaginal disc. Using new methods for spatial and temporal quantification of Dpp activity and its scaling properties, we found that the Dpp response scales with the size of the growing tissue. Notably, scaling is not perfect at all positions in the field and the scaling of target gene domains is ensured specifically where they define vein positions. We also found that the target gene domains are not defined at constant concentration thresholds of the downstream Dpp activity gradients P-Mad and Brinker. Most interestingly, Pentagone, an important secreted feedback regulator of the pathway, plays a central role in scaling and acts as an expander of the Dpp gradient during disc growth.
Resumo:
Data sheet produced by the Iowa Department of Natural Resources is about different times of animals, insects, snakes, birds, fish, butterflies, etc. that can be found in Iowa.
Resumo:
Background: The trithorax group (trxG) genes absent, small or homeotic discs 1 (ash1) and 2 (ash2) were isolated in a screen for mutants with abnormal imaginal discs. Mutations in either gene cause homeotic transformations but Hox genes are not their only targets. Although analysis of double mutants revealed that ash2 and ash1 mutations enhance each other's phenotypes, suggesting they are functionally related, it was shown that these proteins are subunits of distinct complexes.Results: The analysis of wing imaginal disc transcriptomes from ash2 and ash1 mutants showed that they are highly similar. Functional annotation of regulated genes using Gene Ontology allowed identification of severely affected groups of genes that could be correlated to the wing phenotypes observed. Comparison of the differentially expressed genes with those from other genome-wide analyses revealed similarities between ASH2 and Sin3A, suggesting a putative functional relationship. Coimmunoprecipitation studies and immunolocalization on polytene chromosomes demonstrated that ASH2 and Sin3A interact with HCF (host-cell factor). The results of nucleosome western blots and clonal analysis indicated that ASH2 is necessary for trimethylation of the Lys4 on histone 3 (H3K4).Conclusion: The similarity between the transcriptomes of ash2 and ash1 mutants supports a model in which the two genes act together to maintain stable states of transcription. Like in humans, both ASH2 and Sin3A bind HCF. Finally, the reduction of H3K4 trimethylation in ash2 mutants is the first evidence in Drosophila regarding the molecular function of this trxG gene.
Resumo:
Der Sammelband ,,Right-wing extremism" hat ein doppeltes Ziel. Zum einen soll er das Nationale Forschungsprogramm 40plus und seine Projekte präsentieren (die alle mit Beiträgen präsent sind), zum anderen sollen diese nationalen Beiträge in eine internationale Perspektive gestellt werden, sodass in der Übersicht und Umschau eine Verortung der schweizerischen Forschung (und damit auch des NFP40plus selbst) und ihrer Resultate möglich wird. Eingeladen wurden dazu führende europäische Forscher auf dem Gebiet des Rechtsextremismus.
Resumo:
"Morphing Romania and the Moldova Province" gives a short insight of cartograms. Digital cartograms provide potential to move away from classical visualization of geographical data and benefit of new understanding of our world. They introduce a human vision instead of a planimetric one. By applying the Gastner-Newman algorithm for generating density-equalising cartograms to Romania and its Moldova province we can discuss the making of cartograms in general.
Resumo:
Within a developing organism, cells require information on where they are in order to differentiate into the correct cell-type. Pattern formation is the process by which cells acquire and process positional cues and thus determine their fate. This can be achieved by the production and release of a diffusible signaling molecule, called a morphogen, which forms a concentration gradient: exposure to different morphogen levels leads to the activation of specific signaling pathways. Thus, in response to the morphogen gradient, cells start to express different sets of genes, forming domains characterized by a unique combination of differentially expressed genes. As a result, a pattern of cell fates and specification emerges.Though morphogens have been known for decades, it is not yet clear how these gradients form and are interpreted in order to yield highly robust patterns of gene expression. During my PhD thesis, I investigated the properties of Bicoid (Bcd) and Decapentaplegic (Dpp), two morphogens involved in the patterning of the anterior-posterior axis of Drosophila embryo and wing primordium, respectively. In particular, I have been interested in understanding how the pattern proportions are maintained across embryos of different sizes or within a growing tissue. This property is commonly referred to as scaling and is essential for yielding functional organs or organisms. In order to tackle these questions, I analysed fluorescence images showing the pattern of gene expression domains in the early embryo and wing imaginal disc. After characterizing the extent of these domains in a quantitative and systematic manner, I introduced and applied a new scaling measure in order to assess how well proportions are maintained. I found that scaling emerged as a universal property both in early embryos (at least far away from the Bcd source) and in wing imaginal discs (across different developmental stages). Since we were also interested in understanding the mechanisms underlying scaling and how it is transmitted from the morphogen to the target genes down in the signaling cascade, I also quantified scaling in mutant flies where this property could be disrupted. While scaling is largely conserved in embryos with altered bcd dosage, my modeling suggests that Bcd trapping by the nuclei as well as pre-steady state decoding of the morphogen gradient are essential to ensure precise and scaled patterning of the Bcd signaling cascade. In the wing imaginal disc, it appears that as the disc grows, the Dpp response expands and scales with the tissue size. Interestingly, scaling is not perfect at all positions in the field. The scaling of the target gene domains is best where they have a function; Spalt, for example, scales best at the position in the anterior compartment where it helps to form one of the anterior veins of the wing. Analysis of mutants for pentagone, a transcriptional target of Dpp that encodes a secreted feedback regulator of the pathway, indicates that Pentagone plays a key role in scaling the Dpp gradient activity.
Resumo:
Background: Regeneration is the ability of an organism to rebuild a body part that has been damaged or amputated, and can be studied at the molecular level using model organisms. Drosophila imaginal discs, which are the larval primordia of adult cuticular structures, are capable of undergoing regenerative growth after transplantation and in vivo culture into the adult abdomen. Results: Using expression profile analyses, we studied the regenerative behaviour of wing discs at 0, 24 and 72 hours after fragmentation and implantation into adult females. Based on expression level, we generated a catalogue of genes with putative role in wing disc regeneration, identifying four classes: 1) genes with differential expression within the first 24 hours; 2) genes with differential expression between 24 and 72 hours; 3) genes that changed significantly in expression levels between the two time periods; 4) genes with a sustained increase or decrease in their expression levels throughout regeneration. Among these genes, we identified members of the JNK and Notch signalling pathways and chromatin regulators. Through computational analysis, we recognized putative binding sites for transcription factors downstream of these pathways that are conserved in multiple Drosophilids, indicating a potential relationship between members of the different gene classes. Experimental data from genetic mutants provide evidence of a requirement of selected genes in wing disc regeneration. Conclusions: We have been able to distinguish various classes of genes involved in early and late steps of the regeneration process. Our data suggests the integration of signalling pathways in the promoters of regulated genes.