976 resultados para Monte-carlo Simulations
Resumo:
Monte Carlo simulation is a powerful method in many natural and social sciences. But what sort of method is it? And where does its power come from? Are Monte Carlo simulations experiments, theories or something else? The aim of this talk is to answer these questions and to explain the power of Monte Carlo simulations. I provide a classification of Monte Carlo techniques and defend the claim that Monte Carlo simulation is a sort of inference.
Resumo:
Ion beam therapy is a valuable method for the treatment of deep-seated and radio-resistant tumors thanks to the favorable depth-dose distribution characterized by the Bragg peak. Hadrontherapy facilities take advantage of the specific ion range, resulting in a highly conformal dose in the target volume, while the dose in critical organs is reduced as compared to photon therapy. The necessity to monitor the delivery precision, i.e. the ion range, is unquestionable, thus different approaches have been investigated, such as the detection of prompt photons or annihilation photons of positron emitter nuclei created during the therapeutic treatment. Based on the measurement of the induced β+ activity, our group has developed various in-beam PET prototypes: the one under test is composed by two planar detector heads, each one consisting of four modules with a total active area of 10 × 10 cm2. A single detector module is made of a LYSO crystal matrix coupled to a position sensitive photomultiplier and is read-out by dedicated frontend electronics. A preliminary data taking was performed at the Italian National Centre for Oncological Hadron Therapy (CNAO, Pavia), using proton beams in the energy range of 93–112 MeV impinging on a plastic phantom. The measured activity profiles are presented and compared with the simulated ones based on the Monte Carlo FLUKA package.
Resumo:
We review the main results from extensive Monte Carlo (MC) simulations on athermal polymer packings in the bulk and under confinement. By employing the simplest possible model of excluded volume, macromolecules are represented as freely-jointed chains of hard spheres of uniform size. Simulations are carried out in a wide concentration range: from very dilute up to very high volume fractions, reaching the maximally random jammed (MRJ) state. We study how factors like chain length, volume fraction and flexibility of bond lengths affect the structure, shape and size of polymers, their packing efficiency and their phase behaviour (disorder–order transition). In addition, we observe how these properties are affected by confinement realized by flat, impenetrable walls in one dimension. Finally, by mapping the parent polymer chains to primitive paths through direct geometrical algorithms, we analyse the characteristics of the entanglement network as a function of packing density.
Resumo:
A Monte Carlo simulation method for globular proteins, called extended-scaled-collective-variable (ESCV) Monte Carlo, is proposed. This method combines two Monte Carlo algorithms known as entropy-sampling and scaled-collective-variable algorithms. Entropy-sampling Monte Carlo is able to sample a large configurational space even in a disordered system that has a large number of potential barriers. In contrast, scaled-collective-variable Monte Carlo provides an efficient sampling for a system whose dynamics is highly cooperative. Because a globular protein is a disordered system whose dynamics is characterized by collective motions, a combination of these two algorithms could provide an optimal Monte Carlo simulation for a globular protein. As a test case, we have carried out an ESCV Monte Carlo simulation for a cell adhesive Arg-Gly-Asp-containing peptide, Lys-Arg-Cys-Arg-Gly-Asp-Cys-Met-Asp, and determined the conformational distribution at 300 K. The peptide contains a disulfide bridge between the two cysteine residues. This bond mimics the strong geometrical constraints that result from a protein's globular nature and give rise to highly cooperative dynamics. Computation results show that the ESCV Monte Carlo was not trapped at any local minimum and that the canonical distribution was correctly determined.
Resumo:
We describe Janus, a massively parallel FPGA-based computer optimized for the simulation of spin glasses, theoretical models for the behavior of glassy materials. FPGAs (as compared to GPUs or many-core processors) provide a complementary approach to massively parallel computing. In particular, our model problem is formulated in terms of binary variables, and floating-point operations can be (almost) completely avoided. The FPGA architecture allows us to run many independent threads with almost no latencies in memory access, thus updating up to 1024 spins per cycle. We describe Janus in detail and we summarize the physics results obtained in four years of operation of this machine; we discuss two types of physics applications: long simulations on very large systems (which try to mimic and provide understanding about the experimental non equilibrium dynamics), and low-temperature equilibrium simulations using an artificial parallel tempering dynamics. The time scale of our non-equilibrium simulations spans eleven orders of magnitude (from picoseconds to a tenth of a second). On the other hand, our equilibrium simulations are unprecedented both because of the low temperatures reached and for the large systems that we have brought to equilibrium. A finite-time scaling ansatz emerges from the detailed comparison of the two sets of simulations. Janus has made it possible to perform spin glass simulations that would take several decades on more conventional architectures. The paper ends with an assessment of the potential of possible future versions of the Janus architecture, based on state-of-the-art technology.
Resumo:
Aim: To identify an appropriate dosage strategy for patients receiving enoxaparin by continuous intravenous infusion (CII). Methods: Monte Carlo simulations were performed in NONMEM, (200 replicates of 1000 patients) to predict steady state anti-Xa concentrations (Css) for patients receiving a CII of enoxaparin. The covariate distribution model was simulated based on covariate demographics in the CII study population. The impact of patient weight, renal function (creatinine clearance (CrCL)) and patient location (intensive care unit (ICU)) were evaluated. A population pharmacokinetic model was used as the input-output model (1-compartment first order output model with mixed residual error structure). Success of a dosing regimen was based on the percent of Css that is between the therapeutic range of 0.5 IU/ml to 1.2 IU/ml. Results: The best dose for patients in the ICU was 4.2IU/kg/h (success mean 64.8% and 90% prediction interval (PI): 60.1–69.8%) if CrCL60ml/min, the best dose was 8.3IU/kg/h (success mean 65.4%, 90% PI: 58.5–73.2%). Simulations suggest that there was a 50% improvement in the success of the CII if the dose rate for ICU patients with CrCL
Resumo:
A combined and sequential use of Monte Carlo simulations and quantum mechanical calculations is made to analyze the spectral shift of the lowest pi-pi* transition of phenol in water. The solute polarization is included using electrostatic embedded calculations at the MP2/aug-cc-pVDZ level giving a dipole moment of 2.25 D, corresponding to an increase of 76% compared to the calculated gas-phase value. Using statistically uncorrelated configurations sampled from the MC simulation,first-principle size-extensive calculations are performed to obtain the solvatochromic shift. Analysis is then made of the origin of the blue shift. Results both at the optimized geometry and in room-temperature liquid water show that hydrogen bonds of water with phenol promote a red shift when phenol is the proton-donor and a blue shift when phenol is the proton-acceptor. In the case of the optimized clusters the calculated shifts are in very good agreement with results obtained from mass-selected free jet expansion experiments. In the liquid case the contribution of the solute-solvent hydrogen bonds partially cancels and the total shift obtained is dominated by the contribution of the outer solvent water molecules. Our best result, including both inner and outer water molecules, is 570 +/- 35 cm(-1), in very good agreement with the small experimental shift of 460 cm(-1) for the absorption maximum.
Resumo:
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP/6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP/6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7 +/- 0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm. (C) 2008 American Institute of Physics.
Resumo:
Stavskaya's model is a one-dimensional probabilistic cellular automaton (PCA) introduced in the end of the 1960s as an example of a model displaying a nonequilibrium phase transition. Although its absorbing state phase transition is well understood nowadays, the model never received a full numerical treatment to investigate its critical behavior. In this Brief Report we characterize the critical behavior of Stavskaya's PCA by means of Monte Carlo simulations and finite-size scaling analysis. The critical exponents of the model are calculated and indicate that its phase transition belongs to the directed percolation universality class of critical behavior, as would be expected on the basis of the directed percolation conjecture. We also explicitly establish the relationship of the model with the Domany-Kinzel PCA on its directed site percolation line, a connection that seems to have gone unnoticed in the literature so far.
Resumo:
The present paper reports the precipitation process of Al3Sc structures in an aluminum scandium alloy, which has been simulated with a synchronous parallel kinetic Monte Carlo (spkMC) algorithm. The spkMC implementation is based on the vacancy diffusion mechanism. To filter the raw data generated by the spkMC simulations, the density-based clustering with noise (DBSCAN) method has been employed. spkMC and DBSCAN algorithms were implemented in the C language and using MPI library. The simulations were conducted in the SeARCH cluster located at the University of Minho. The Al3Sc precipitation was successfully simulated at the atomistic scale with the spkMC. DBSCAN proved to be a valuable aid to identify the precipitates by performing a cluster analysis of the simulation results. The achieved simulations results are in good agreement with those reported in the literature under sequential kinetic Monte Carlo simulations (kMC). The parallel implementation of kMC has provided a 4x speedup over the sequential version.
Resumo:
The aim of ORAMED work package 4 was the optimization of the medical practices in nuclear medicine during the preparation of radiopharmaceuticals and their administration to the patient. During the project a wide campaign of measurements was performed in the nuclear medicine departments of the collaborating hospitals. Such data were intrinsically characterized by a large variability that depended on the procedure, the employed techniques and the operator's habits. That variability could easily hide some important parameter, for example, the effectiveness of the adopted shielding (for syringe and vial) or the effect of the distances from the source. This information is necessary for a valuable optimization purpose of radiation protection. To this end a sensitivity analysis was carried out through Monte Carlo simulations employing voxel models, representing operator's hand during the considered practices. Such analysis allowed understanding at what extent the range of personal dose equivalent evaluated during measurements can be considered intrinsically related to the procedures. Furthermore, with the Monte Carlo simulations it was possible to study the appropriateness of the shielding usually utilized in these practices.
Resumo:
Monte Carlo simulations of a model for gamma-Fe2O3 (maghemite) single particle of spherical shape are presented aiming at the elucidation of the specific role played by the finite size and the surface on the anomalous magnetic behavior observed in small particle systems at low temperature. The influence of the finite-size effects on the equilibrium properties of extensive magnitudes, field coolings, and hysteresis loops is studied and compared to the results for periodic boundaries. It is shown that for the smallest sizes the thermal demagnetization of the surface completely dominates the magnetization while the behavior of the core is similar to that of the periodic boundary case, independently of D. The change in shape of the hysteresis loops with D demonstrates that the reversal mode is strongly influenced by the presence of broken links and disorder at the surface
Resumo:
When decommissioning a nuclear facility it is important to be able to estimate activity levels of potentially radioactive samples and compare with clearance values defined by regulatory authorities. This paper presents a method of calibrating a clearance box monitor based on practical experimental measurements and Monte Carlo simulations. Adjusting the simulation for experimental data obtained using a simple point source permits the computation of absolute calibration factors for more complex geometries with an accuracy of a bit more than 20%. The uncertainty of the calibration factor can be improved to about 10% when the simulation is used relatively, in direct comparison with a measurement performed in the same geometry but with another nuclide. The simulation can also be used to validate the experimental calibration procedure when the sample is supposed to be homogeneous but the calibration factor is derived from a plate phantom. For more realistic geometries, like a small gravel dumpster, Monte Carlo simulation shows that the calibration factor obtained with a larger homogeneous phantom is correct within about 20%, if sample density is taken as the influencing parameter. Finally, simulation can be used to estimate the effect of a contamination hotspot. The research supporting this paper shows that activity could be largely underestimated in the event of a centrally-located hotspot and overestimated for a peripherally-located hotspot if the sample is assumed to be homogeneously contaminated. This demonstrates the usefulness of being able to complement experimental methods with Monte Carlo simulations in order to estimate calibration factors that cannot be directly measured because of a lack of available material or specific geometries.