972 resultados para Monte Carlo methods
Resumo:
The paper presents an introductory and general discussion on the quantum Monte Carlo methods, some fundamental algorithms, concepts and applicability. In order to introduce the quantum Monte Carlo method, preliminary concepts associated with Monte Carlo techniques are discussed.
Resumo:
The technique of Monte Carlo (MC) tests [Dwass (1957), Barnard (1963)] provides an attractive method of building exact tests from statistics whose finite sample distribution is intractable but can be simulated (provided it does not involve nuisance parameters). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing the method to statistics whose null distributions involve nuisance parameters (maximized MC tests, MMC). Simplified asymptotically justified versions of the MMC method are also proposed and it is shown that they provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics (e.g., unit root asymptotics). Parametric bootstrap tests may be interpreted as a simplified version of the MMC method (without the general validity properties of the latter).
Resumo:
While channel coding is a standard method of improving a system’s energy efficiency in digital communications, its practice does not extend to high-speed links. Increasing demands in network speeds are placing a large burden on the energy efficiency of high-speed links and render the benefit of channel coding for these systems a timely subject. The low error rates of interest and the presence of residual intersymbol interference (ISI) caused by hardware constraints impede the analysis and simulation of coded high-speed links. Focusing on the residual ISI and combined noise as the dominant error mechanisms, this paper analyses error correlation through concepts of error region, channel signature, and correlation distance. This framework provides a deeper insight into joint error behaviours in high-speed links, extends the range of statistical simulation for coded high-speed links, and provides a case against the use of biased Monte Carlo methods in this setting
Resumo:
A model for the structure of amorphous molybdenum trisulfide, a-MoS3, has been created using reverse Monte Carlo methods. This model, which consists of chains Of MoS6 units sharing three sulfurs with each of its two neighbors and forming alternate long, nonbonded, and short, bonded, Mo-Mo separations, is a good fit to the neutron diffraction data and is chemically and physically realistic. The paper identifies the limitations of previous models based on Mo-3 triangular clusters in accounting for the available experimental data.
Resumo:
This paper is addressed to the numerical solving of the rendering equation in realistic image creation. The rendering equation is integral equation describing the light propagation in a scene accordingly to a given illumination model. The used illumination model determines the kernel of the equation under consideration. Nowadays, widely used are the Monte Carlo methods for solving the rendering equation in order to create photorealistic images. In this work we consider the Monte Carlo solving of the rendering equation in the context of the parallel sampling scheme for hemisphere. Our aim is to apply this sampling scheme to stratified Monte Carlo integration method for parallel solving of the rendering equation. The domain for integration of the rendering equation is a hemisphere. We divide the hemispherical domain into a number of equal sub-domains of orthogonal spherical triangles. This domain partitioning allows to solve the rendering equation in parallel. It is known that the Neumann series represent the solution of the integral equation as a infinity sum of integrals. We approximate this sum with a desired truncation error (systematic error) receiving the fixed number of iteration. Then the rendering equation is solved iteratively using Monte Carlo approach. At each iteration we solve multi-dimensional integrals using uniform hemisphere partitioning scheme. An estimate of the rate of convergence is obtained using the stratified Monte Carlo method. This domain partitioning allows easy parallel realization and leads to convergence improvement of the Monte Carlo method. The high performance and Grid computing of the corresponding Monte Carlo scheme are discussed.
Resumo:
The sampling of certain solid angle is a fundamental operation in realistic image synthesis, where the rendering equation describing the light propagation in closed domains is solved. Monte Carlo methods for solving the rendering equation use sampling of the solid angle subtended by unit hemisphere or unit sphere in order to perform the numerical integration of the rendering equation. In this work we consider the problem for generation of uniformly distributed random samples over hemisphere and sphere. Our aim is to construct and study the parallel sampling scheme for hemisphere and sphere. First we apply the symmetry property for partitioning of hemisphere and sphere. The domain of solid angle subtended by a hemisphere is divided into a number of equal sub-domains. Each sub-domain represents solid angle subtended by orthogonal spherical triangle with fixed vertices and computable parameters. Then we introduce two new algorithms for sampling of orthogonal spherical triangles. Both algorithms are based on a transformation of the unit square. Similarly to the Arvo's algorithm for sampling of arbitrary spherical triangle the suggested algorithms accommodate the stratified sampling. We derive the necessary transformations for the algorithms. The first sampling algorithm generates a sample by mapping of the unit square onto orthogonal spherical triangle. The second algorithm directly compute the unit radius vector of a sampling point inside to the orthogonal spherical triangle. The sampling of total hemisphere and sphere is performed in parallel for all sub-domains simultaneously by using the symmetry property of partitioning. The applicability of the corresponding parallel sampling scheme for Monte Carlo and Quasi-D/lonte Carlo solving of rendering equation is discussed.
Resumo:
This paper is turned to the advanced Monte Carlo methods for realistic image creation. It offers a new stratified approach for solving the rendering equation. We consider the numerical solution of the rendering equation by separation of integration domain. The hemispherical integration domain is symmetrically separated into 16 parts. First 9 sub-domains are equal size of orthogonal spherical triangles. They are symmetric each to other and grouped with a common vertex around the normal vector to the surface. The hemispherical integration domain is completed with more 8 sub-domains of equal size spherical quadrangles, also symmetric each to other. All sub-domains have fixed vertices and computable parameters. The bijections of unit square into an orthogonal spherical triangle and into a spherical quadrangle are derived and used to generate sampling points. Then, the symmetric sampling scheme is applied to generate the sampling points distributed over the hemispherical integration domain. The necessary transformations are made and the stratified Monte Carlo estimator is presented. The rate of convergence is obtained and one can see that the algorithm is of super-convergent type.
Resumo:
In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.
Resumo:
In any data mining applications, automated text and text and image retrieval of information is needed. This becomes essential with the growth of the Internet and digital libraries. Our approach is based on the latent semantic indexing (LSI) and the corresponding term-by-document matrix suggested by Berry and his co-authors. Instead of using deterministic methods to find the required number of first "k" singular triplets, we propose a stochastic approach. First, we use Monte Carlo method to sample and to build much smaller size term-by-document matrix (e.g. we build k x k matrix) from where we then find the first "k" triplets using standard deterministic methods. Second, we investigate how we can reduce the problem to finding the "k"-largest eigenvalues using parallel Monte Carlo methods. We apply these methods to the initial matrix and also to the reduced one. The algorithms are running on a cluster of workstations under MPI and results of the experiments arising in textual retrieval of Web documents as well as comparison of the stochastic methods proposed are presented. (C) 2003 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Regulatory authorities in many countries, in order to maintain an acceptable balance between appropriate customer service qualities and costs, are introducing a performance-based regulation. These regulations impose penalties, and in some cases rewards, which introduce a component of financial risk to an electric power utility due to the uncertainty associated with preserving a specific level of system reliability. In Brazil, for instance, one of the reliability indices receiving special attention by the utilities is the Maximum Continuous Interruption Duration per customer (MCID). This paper describes a chronological Monte Carlo simulation approach to evaluate probability distributions of reliability indices, including the MCID, and the corresponding penalties. In order to get the desired efficiency, modern computational techniques are used for modeling (UML -Unified Modeling Language) as well as for programming (Object- Oriented Programming). Case studies on a simple distribution network and on real Brazilian distribution systems are presented and discussed. © Copyright KTH 2006.
Resumo:
Pós-graduação em Física - IFT
Resumo:
The phase diagram of an asymmetric N = 3 Ashkin-Teller model is obtained by a numerical analysis which combines Monte Carlo renormalization group and reweighting techniques. Present results reveal several differences with those obtained by mean-field calculations and a Hamiltonian approach. In particular, we found Ising critical exponents along a line where Goldschmidt has located the Kosterlitz-Thouless multicritical point. On the other hand, we did find nonuniversal exponents along another transition line. Symmetry breaking in this case is very similar to the N = 2 case, since the symmetries associated to only two of the Ising variables are broken. However, for large values of the coupling constant ratio XW = W/K, when the only broken symmetry is of a hidden variable, we detected first-order phase transitions giving evidence supporting the existence of a multicritical point, as suggested by Goldschmidt, but in a different region of the phase diagram. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Un escenario habitualmente considerado para el uso sostenible y prolongado de la energía nuclear contempla un parque de reactores rápidos refrigerados por metales líquidos (LMFR) dedicados al reciclado de Pu y la transmutación de actínidos minoritarios (MA). Otra opción es combinar dichos reactores con algunos sistemas subcríticos asistidos por acelerador (ADS), exclusivamente destinados a la eliminación de MA. El diseño y licenciamiento de estos reactores innovadores requiere herramientas computacionales prácticas y precisas, que incorporen el conocimiento obtenido en la investigación experimental de nuevas configuraciones de reactores, materiales y sistemas. A pesar de que se han construido y operado un cierto número de reactores rápidos a nivel mundial, la experiencia operacional es todavía reducida y no todos los transitorios se han podido entender completamente. Por tanto, los análisis de seguridad de nuevos LMFR están basados fundamentalmente en métodos deterministas, al contrario que las aproximaciones modernas para reactores de agua ligera (LWR), que se benefician también de los métodos probabilistas. La aproximación más usada en los estudios de seguridad de LMFR es utilizar una variedad de códigos, desarrollados a base de distintas teorías, en busca de soluciones integrales para los transitorios e incluyendo incertidumbres. En este marco, los nuevos códigos para cálculos de mejor estimación ("best estimate") que no incluyen aproximaciones conservadoras, son de una importancia primordial para analizar estacionarios y transitorios en reactores rápidos. Esta tesis se centra en el desarrollo de un código acoplado para realizar análisis realistas en reactores rápidos críticos aplicando el método de Monte Carlo. Hoy en día, dado el mayor potencial de recursos computacionales, los códigos de transporte neutrónico por Monte Carlo se pueden usar de manera práctica para realizar cálculos detallados de núcleos completos, incluso de elevada heterogeneidad material. Además, los códigos de Monte Carlo se toman normalmente como referencia para los códigos deterministas de difusión en multigrupos en aplicaciones con reactores rápidos, porque usan secciones eficaces punto a punto, un modelo geométrico exacto y tienen en cuenta intrínsecamente la dependencia angular de flujo. En esta tesis se presenta una metodología de acoplamiento entre el conocido código MCNP, que calcula la generación de potencia en el reactor, y el código de termohidráulica de subcanal COBRA-IV, que obtiene las distribuciones de temperatura y densidad en el sistema. COBRA-IV es un código apropiado para aplicaciones en reactores rápidos ya que ha sido validado con resultados experimentales en haces de barras con sodio, incluyendo las correlaciones más apropiadas para metales líquidos. En una primera fase de la tesis, ambos códigos se han acoplado en estado estacionario utilizando un método iterativo con intercambio de archivos externos. El principal problema en el acoplamiento neutrónico y termohidráulico en estacionario con códigos de Monte Carlo es la manipulación de las secciones eficaces para tener en cuenta el ensanchamiento Doppler cuando la temperatura del combustible aumenta. Entre todas las opciones disponibles, en esta tesis se ha escogido la aproximación de pseudo materiales, y se ha comprobado que proporciona resultados aceptables en su aplicación con reactores rápidos. Por otro lado, los cambios geométricos originados por grandes gradientes de temperatura en el núcleo de reactores rápidos resultan importantes para la neutrónica como consecuencia del elevado recorrido libre medio del neutrón en estos sistemas. Por tanto, se ha desarrollado un módulo adicional que simula la geometría del reactor en caliente y permite estimar la reactividad debido a la expansión del núcleo en un transitorio. éste módulo calcula automáticamente la longitud del combustible, el radio de la vaina, la separación de los elementos de combustible y el radio de la placa soporte en función de la temperatura. éste efecto es muy relevante en transitorios sin inserción de bancos de parada. También relacionado con los cambios geométricos, se ha implementado una herramienta que, automatiza el movimiento de las barras de control en busca d la criticidad del reactor, o bien calcula el valor de inserción axial las barras de control. Una segunda fase en la plataforma de cálculo que se ha desarrollado es la simulació dinámica. Puesto que MCNP sólo realiza cálculos estacionarios para sistemas críticos o supercríticos, la solución más directa que se propone sin modificar el código fuente de MCNP es usar la aproximación de factorización de flujo, que resuelve por separado la forma del flujo y la amplitud. En este caso se han estudiado en profundidad dos aproximaciones: adiabática y quasiestática. El método adiabático usa un esquema de acoplamiento que alterna en el tiempo los cálculos neutrónicos y termohidráulicos. MCNP calcula el modo fundamental de la distribución de neutrones y la reactividad al final de cada paso de tiempo, y COBRA-IV calcula las propiedades térmicas en el punto intermedio de los pasos de tiempo. La evolución de la amplitud de flujo se calcula resolviendo las ecuaciones de cinética puntual. Este método calcula la reactividad estática en cada paso de tiempo que, en general, difiere de la reactividad dinámica que se obtendría con la distribución de flujo exacta y dependiente de tiempo. No obstante, para entornos no excesivamente alejados de la criticidad ambas reactividades son similares y el método conduce a resultados prácticos aceptables. Siguiendo esta línea, se ha desarrollado después un método mejorado para intentar tener en cuenta el efecto de la fuente de neutrones retardados en la evolución de la forma del flujo durante el transitorio. El esquema consiste en realizar un cálculo cuasiestacionario por cada paso de tiempo con MCNP. La simulación cuasiestacionaria se basa EN la aproximación de fuente constante de neutrones retardados, y consiste en dar un determinado peso o importancia a cada ciclo computacial del cálculo de criticidad con MCNP para la estimación del flujo final. Ambos métodos se han verificado tomando como referencia los resultados del código de difusión COBAYA3 frente a un ejercicio común y suficientemente significativo. Finalmente, con objeto de demostrar la posibilidad de uso práctico del código, se ha simulado un transitorio en el concepto de reactor crítico en fase de diseño MYRRHA/FASTEF, de 100 MW de potencia térmica y refrigerado por plomo-bismuto. ABSTRACT Long term sustainable nuclear energy scenarios envisage a fleet of Liquid Metal Fast Reactors (LMFR) for the Pu recycling and minor actinides (MAs) transmutation or combined with some accelerator driven systems (ADS) just for MAs elimination. Design and licensing of these innovative reactor concepts require accurate computational tools, implementing the knowledge obtained in experimental research for new reactor configurations, materials and associated systems. Although a number of fast reactor systems have already been built, the operational experience is still reduced, especially for lead reactors, and not all the transients are fully understood. The safety analysis approach for LMFR is therefore based only on deterministic methods, different from modern approach for Light Water Reactors (LWR) which also benefit from probabilistic methods. Usually, the approach adopted in LMFR safety assessments is to employ a variety of codes, somewhat different for the each other, to analyze transients looking for a comprehensive solution and including uncertainties. In this frame, new best estimate simulation codes are of prime importance in order to analyze fast reactors steady state and transients. This thesis is focused on the development of a coupled code system for best estimate analysis in fast critical reactor. Currently due to the increase in the computational resources, Monte Carlo methods for neutrons transport can be used for detailed full core calculations. Furthermore, Monte Carlo codes are usually taken as reference for deterministic diffusion multigroups codes in fast reactors applications because they employ point-wise cross sections in an exact geometry model and intrinsically account for directional dependence of the ux. The coupling methodology presented here uses MCNP to calculate the power deposition within the reactor. The subchannel code COBRA-IV calculates the temperature and density distribution within the reactor. COBRA-IV is suitable for fast reactors applications because it has been validated against experimental results in sodium rod bundles. The proper correlations for liquid metal applications have been added to the thermal-hydraulics program. Both codes are coupled at steady state using an iterative method and external files exchange. The main issue in the Monte Carlo/thermal-hydraulics steady state coupling is the cross section handling to take into account Doppler broadening when temperature rises. Among every available options, the pseudo materials approach has been chosen in this thesis. This approach obtains reasonable results in fast reactor applications. Furthermore, geometrical changes caused by large temperature gradients in the core, are of major importance in fast reactor due to the large neutron mean free path. An additional module has therefore been included in order to simulate the reactor geometry in hot state or to estimate the reactivity due to core expansion in a transient. The module automatically calculates the fuel length, cladding radius, fuel assembly pitch and diagrid radius with the temperature. This effect will be crucial in some unprotected transients. Also related to geometrical changes, an automatic control rod movement feature has been implemented in order to achieve a just critical reactor or to calculate control rod worth. A step forward in the coupling platform is the dynamic simulation. Since MCNP performs only steady state calculations for critical systems, the more straight forward option without modifying MCNP source code, is to use the flux factorization approach solving separately the flux shape and amplitude. In this thesis two options have been studied to tackle time dependent neutronic simulations using a Monte Carlo code: adiabatic and quasistatic methods. The adiabatic methods uses a staggered time coupling scheme for the time advance of neutronics and the thermal-hydraulics calculations. MCNP computes the fundamental mode of the neutron flux distribution and the reactivity at the end of each time step and COBRA-IV the thermal properties at half of the the time steps. To calculate the flux amplitude evolution a solver of the point kinetics equations is used. This method calculates the static reactivity in each time step that in general is different from the dynamic reactivity calculated with the exact flux distribution. Nevertheless, for close to critical situations, both reactivities are similar and the method leads to acceptable practical results. In this line, an improved method as an attempt to take into account the effect of delayed neutron source in the transient flux shape evolutions is developed. The scheme performs a quasistationary calculation per time step with MCNP. This quasistationary simulations is based con the constant delayed source approach, taking into account the importance of each criticality cycle in the final flux estimation. Both adiabatic and quasistatic methods have been verified against the diffusion code COBAYA3, using a theoretical kinetic exercise. Finally, a transient in a critical 100 MWth lead-bismuth-eutectic reactor concept is analyzed using the adiabatic method as an application example in a real system.
Resumo:
A new Monte Carlo algorithm is introduced for the simulation of supercooled liquids and glass formers, and tested in two model glasses. The algorithm thermalizes well below the Mode Coupling temperature and outperforms other optimized Monte Carlo methods.
Resumo:
MSC Subject Classification: 65C05, 65U05.