954 resultados para Montana Fish and Game
Resumo:
In this issue...Geology, Mineral Club, Homecoming Queen, Pipestone Pass, Parachute club, Tech Band, High Ore Mine, Cheerleaders, Nitrogen Generator
Resumo:
In this issue...Chess Tournament, Suzie Foote, Mine Rescue Training, Vesta Scott, Liberal Arts, Montana Fish and Game, National Honor Society
Resumo:
"Domestic wines and liquors": p. 226-236.
Resumo:
Editing: Vince Prichard, Pete Hansson, Bettie Mock.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
(PDF contains 4 pages)
Resumo:
(PDF contains 2 pages.)
Resumo:
This study describes fish assemblages and their spatial patterns off the coast of California from Point Arena to Point Sal, by combining the results of the multivariate analyses of several fisheries datasets with a geographic information system. In order to provide comprehensive spatial coverage for the areas of inshore, continental shelf, and continental slope, three fisheries datasets were analyzed: 1) Inshore: the California Department of Fish and Game dataset of fishery-dependent commercial passenger fishing vessel trips that targeted rockfish; 2) Continental Shelf: the National Marine Fisheries Service (NMFS) fishery-independent bottom trawls; and 3) Continental Slope: the NMFS fishery-independent bottom trawls on the continental slope. One-hundred seven species were analyzed. These species represented those captured in at least 5% of the fishing trips or trawls in at least one of the three data sets. We analyzed each of the three datasets separately, and the three sets of results were combined to define 28 species assemblages and 23 site groups. A species assemblage consisted of species caught together, whereas a site group consisted of fishing trips or trawl locations that tended to have the same species assemblages. At the scale of these datasets, 97% of all site groups were significantly segregated by depth.
Resumo:
The California Department of Fish and Game data base of California commercial fish landings for the period 1928 to 1985 has been assembled in computer accessible form at the Pacific Fisheries Environmental Group in Monterey, California. Time series for fishes whose landings are known to vary during periods of ocean warming were compared to time series of sea surface temperature. Expected patterns of variation were confirmed in the seasonal cycle, but were less clear on the interannual scale. When interannual variation was considered, the most serious hindrance to interpretation of the landings series appeared to be the continued reduction of the fish stocks due to commercial exploitation; other factors are discussed. Landings data contain information potentially useful in climatological studies, but problems should be anticipated in their use.
Resumo:
Prepared in cooperation with the U.S. Bureau of Land Management and the Montana Department of Fish and Game.
Resumo:
Includes bibliography.
Resumo:
Background: In order to design appropriate environments for performance and learning of movement skills, physical educators need a sound theoretical model of the learner and of processes of learning. In physical education, this type of modelling informs the organization of learning environments and effective and efficient use of practice time. An emerging theoretical framework in motor learning, relevant to physical education, advocates a constraints-led perspective for acquisition of movement skills and game play knowledge. This framework shows how physical educators could use task, performer and environmental constraints to channel acquisition of movement skills and decision making behaviours in learners. From this viewpoint, learners generate specific movement solutions to satisfy the unique combination of constraints imposed on them, a process which can be harnessed during physical education lessons. Purpose: In this paper the aim is to provide an overview of the motor learning approach emanating from the constraints-led perspective, and examine how it can substantiate a platform for a new pedagogical framework in physical education: nonlinear pedagogy. We aim to demonstrate that it is only through theoretically valid and objective empirical work of an applied nature that a conceptually sound nonlinear pedagogy model can continue to evolve and support research in physical education. We present some important implications for designing practices in games lessons, showing how a constraints-led perspective on motor learning could assist physical educators in understanding how to structure learning experiences for learners at different stages, with specific focus on understanding the design of games teaching programmes in physical education, using exemplars from Rugby Union and Cricket. Findings: Research evidence from recent studies examining movement models demonstrates that physical education teachers need a strong understanding of sport performance so that task constraints can be manipulated so that information-movement couplings are maintained in a learning environment that is representative of real performance situations. Physical educators should also understand that movement variability may not necessarily be detrimental to learning and could be an important phenomenon prior to the acquisition of a stable and functional movement pattern. We highlight how the nonlinear pedagogical approach is student-centred and empowers individuals to become active learners via a more hands-off approach to learning. Summary: A constraints-based perspective has the potential to provide physical educators with a framework for understanding how performer, task and environmental constraints shape each individual‟s physical education. Understanding the underlying neurobiological processes present in a constraints-led perspective to skill acquisition and game play can raise awareness of physical educators that teaching is a dynamic 'art' interwoven with the 'science' of motor learning theories.
Resumo:
Over recent years, Unmanned Air Vehicles or UAVs have become a powerful tool for reconnaissance and surveillance tasks. These vehicles are now available in a broad size and capability range and are intended to fly in regions where the presence of onboard human pilots is either too risky or unnecessary. This paper describes the formulation and application of a design framework that supports the complex task of multidisciplinary design optimisation of UAVs systems via evolutionary computation. The framework includes a Graphical User Interface (GUI), a robust Evolutionary Algorithm optimiser named HAPEA, several design modules, mesh generators and post-processing capabilities in an integrated platform. These population –based algorithms such as EAs are good for cases problems where the search space can be multi-modal, non-convex or discontinuous, with multiple local minima and with noise, and also problems where we look for multiple solutions via Game Theory, namely a Nash equilibrium point or a Pareto set of non-dominated solutions. The application of the methodology is illustrated on conceptual and detailed multi-criteria and multidisciplinary shape design problems. Results indicate the practicality and robustness of the framework to find optimal shapes and trade—offs between the disciplinary analyses and to produce a set of non dominated solutions of an optimal Pareto front to the designer.