965 resultados para Monolitic glassy carbon
Resumo:
A simple and rapid method for morphine detection has been described based on electrochemical pretreatment of glassy carbon electrode (GCE) which was treated by anodic oxidation at 1.75 V, following potential cycling in the potential range from 0 V to 1.0 V vs. Ag vertical bar AgCl reference electrode. The sensitivity for morphine detection was improved greatly and the detection limit was 0.2 mu M. The reproducibility of the voltammetric measurements was usually less than 3% RSD for six replicate measurements. Moreover, this method could readily discriminate morphine from codeine. And an electrochemical detection of morphine in spiked urine sample was succeeded with satisfactory results.
Resumo:
In this article, a novel technique for the fabrication of surface enhanced Raman scattering (SERS) active silver clusters on glassy carbon (GC) has been proposed. It was found that silver clusters could be formed on a layer of positively charged poly(diallyldimethylammonium) (PDDA) anchored to a carbon surface by 4-aminobenzoic acid when a drop containing silver nanoparticles was deposited on it. The characteristics of the obtained silver clusters have been investigated by atomic force microscopy (AFM), SERS and an SERS-based Raman mapping technique in the form of line scanning. The AFM image shows that the silver clusters consist of several silver nanoparticles and the size of the clusters is in the range 80-100 nm. The SERS spectra of different concentrations of rhodamine 6G (R6G) on the silver clusters were obtained and compared with those from a silver colloid. The apparent enhancement factor (AEF) was estimated to be as large as 3.1 x 10(4) relative to silver colloid, which might have resulted from the presence of 'hot-spots' at the silver clusters, providing a highly localized electromagnetic field for the large enhancement of the SERS spectra of R6G. The minimum electromagnetic enhancement factor (EEF) is estimated to be 5.4 x 10(7) by comparison with the SERS spectra of R6G on the silver clusters and on the bare GC surface.
Resumo:
In this paper, the fabrication of an active surf ace-enhanced Raman scattering (SERS) substrate by self-assembled silver nanoparticles on a monolayer of 4-aminophenyl-group-modified glassy carbon (GC) is reported. Silver nanoparticles are attached to the substrate through the electrostatic force between the negatively charged silver nanoparticles and the positively charged 4-aminophenyl groups on GC. The active SERS substrate has been characterized by means of tapping-mode atomic force microscopy (AFM), indicating that large quantities of silver nanoparticles are uniformly coated on the substrate. Rhodamine 6G (R6G) and p-aminothiophenol (p-ATP) are used as the probe molecules for SERS, resulting in high sensitivity to the SERS response, with the detection limit reaching as low as 10(-9) m. This approach is easily controlled and reproducible, and more importantly, can extend the range of usable substrates to carbon-based materials for SERS with high sensitivity.
Resumo:
A hybrid thin film containing Pt nanoparticles and [tetrakis(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) modified multi-walled carbon nanotubes (MWNTs) on a glassy carbon (GC) electrode surface was fabricated. This hybrid film electrode exhibited remarkable electrocatalytic activity for oxygen reduction and high stability with promising applications in fuel cells.
Resumo:
The multi-walled carbon nanotubes (MWNTs) modified glassy carbon electrode exhibited electrocatalytic activity to the reduction of oxygen in 0.1 M HAc-NaAc (pH 3.8) buffer solution. Further modification with cobalt porphyrin film on the MWNTs by adsorption, the resulted modified electrode showed more efficient catalytic activity to O-2 reduction. The reduction peak potential of O-2 is shifted much more positively to 0.12 V (vs. Ag/AgCl), and the peak current is increased greatly. Cyclic voltammetry (CV), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), were used to characterize the material and the modified film on electrode surface. Electrochemical experiments gave the total number of electron transfer for oxygen reduction as about 3, which indicated a co-exist process of 2 electrons and 4 electrons for reduction of oxygen at this modified electrode. Meanwhile, the catalytic activities of the multilayer film (MVVNTs/CoTMPyP)(n) prepared by layer-by-layer method were investigated, and the results showed that the peak current of O-2 reduction increased and the peak potential shifted to a positive direction with the increase of layer numbers.
Resumo:
The cobalt hexacyanoferrate film (CoHCF) was deposited on the surface of a glassy carbon (GC) electrode with a potential cycling procedure in the presence and absence of the cationic surfactant, cetyl trimethylammonium bromide (CTAB), to form CoHCF modified GC (CoHCF/GC) electrode. It was found that CTAB would affect the growth of the CoHCF film, the electrochemical behavior of the CoHCF film and the electrocatalytic activity of the CoHCF/GC electrode towards the electrochemical oxidation of dopamine (DA). The reasons of the electrochemical behavior of CoHCF/GC electrode influenced by CTAB were investigated using FTIR and scanning electron microscope (SEM) techniques. The apparent rate constant of electrocatalytic oxidation of DA catalyzed by CoHCF was determined using the rotating disk electrode measurements.
Resumo:
A new carbon composite electrode material, based on dispersing glassy carbon (GC) microparticles into methyltrimethoxysilane-derived sol, is described in the present paper. The resulting glassy carbon ceramic composite electrodes (GCCEs) combine the electrochemical properties of GC with the advantages of composite electrodes, and thus offer high electrochemical reactivity, low background current and are easy to prepare, modify and renew. The new material has a low double-layer capacitance and a wide potential window. Scanning electron microscopy (SEM) images indicate significant difference in the structure of GCCE and carbon ceramic composite electrode (CCE). The electrochemical properties and advantages of GCCE should find broad utility in electroanalysis.
Resumo:
4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous Solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.
Resumo:
In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
A stable electroactive thin film of cobalt hexacyanoferrate (CoHCF) was electrochemically deposited on the surface of a glassy carbon (GC) electrode with a new and simple method. The cyclic voltammograms of the CoHCF Film modified GC (CoHCF/GC) electrode prepared by this method exhibit two pairs of well-defined redox peaks, at scan rates up to 200 mV s(-1). The advantage of this method is that it is easy to manipulate and to control the surface coverage of CoHCF on the electrode surface. The modified electrode shows good electrocatalytic activity towards the electrochemical reaction of dopamine (DA) in a 0.1 mol dm (3) KNO3 + phosphate buffer solution (pH 7.0). The rate constant of the electrocatalytic oxidation of DA at the CoHCF/GC electrode is determined by employing rotating disk electrode measurements.
Resumo:
We synthesized a kind of gold nanoparticle protected by a synthetic lipid (didodecyidimethylammonium bromide, DDAB). With the help of these gold nanoparticles, hemoglobin can exhibit a direct electron transfer (DET) reaction. The formal potential locates at -169 mV vs. Ag/AgCl. Spectral data indicated the hemoglobin on the electrode was not denatured. The lipid-protected gold nanoparticles were very stable (for at least 8 months). Their average diameter is 6.42 nm. It is the first time to use monolayer-protected nanoparticles to realize the direct electrochemistry of protein.
Resumo:
The anodic voltammetric behavior of ethambutol in the presence of various electrolytes was studied by direct-current voltammetry, differential-pluse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.039 mol/L Na2HPO4, an oxidative peak of ethambutol was obtained. The peak potential is at about 1.04 V( vs. Ag/AgCl). The height of the peak is linearly increased with the concentration of ethambutol over the range of 3 mg/Lsimilar to1000 mg/L. The method has been used for the direct determination of ethambutol in tablets. The average recovery of ethambutol in urine samples is 84.7%. Experimental results proved that the electrode reaction was diffusion controlled and irreversible.
Resumo:
A novel approach of generating cathodic electrochemiluminescence lof Ru(bpy)(3)(2+) at -0.4 V triggered by reactive oxygen species is reported for detecting alkylamines and some organic acids.
Resumo:
Through layer-by-layer assembly, a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu. or Zn) were first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface. The electrochemical behaviors of these polyoxometalates were investigated. They exhibit some special properties in the films different from those in homogeneous aqueous solution. The Cu-centered reaction mechanism in the ZnW11Cu multilayer film was described. The electrocatalytic behaviors of these multilayer film electrodes to the reduction of H2O2 and BrO3- were comparatively studied.