984 resultados para Molecular design
Resumo:
Chagas disease is nowadays the most serious parasitic health problem. This disease is caused by Trypanosoma cruzi. The great number of deaths and the insufficient effectiveness of drugs against this parasite have alarmed the scientific community worldwide. In an attempt to overcome this problem, a model for the design and prediction of new antitrypanosomal agents was obtained. This used a mixed approach, containing simple descriptors based on fragments and topological substructural molecular design descriptors. A data set was made up of 188 compounds, 99 of them characterized an antitrypanosomal activity and 88 compounds that belong to other pharmaceutical categories. The model showed sensitivity, specificity and accuracy values above 85%. Quantitative fragmental contributions were also calculated. Then, and to confirm the quality of the model, 15 structures of molecules tested as antitrypanosomal compounds (that we did not include in this study) were predicted, taking into account the information on the abovementioned calculated fragmental contributions. The model showed an accuracy of 100% which means that the ""in silico"" methodology developed by our team is promising for the rational design of new antitrypanosomal drugs. (C) 2009 Wiley Periodicals, Inc. J Comput Chem 31: 882-894. 2010
Resumo:
The Dengue has become a global public health threat, with over 100 million infections annually; to date there is no specific vaccine or any antiviral drug. The structures of the envelope (E) proteins of the four known serotype of the dengue virus (DENV) are already known, but there are insufficient molecular details of their structural behavior in solution in the distinct environmental conditions in which the DENVs are submitted, from the digestive tract of the mosquito up to its replication inside the host cell. Such detailed knowledge becomes important because of the multifunctional character of the E protein: it mediates the early events in cell entry, via receptor endocytosis and, as a class II protein, participates determinately in the process of membrane fusion. The proposed infection mechanism asserts that once in the endosome, at low pH, the E homodimers dissociate and insert into the endosomal lipid membrane, after an extensive conformational change, mainly on the relative arrangement of its three domains. In this work we employ all-atom explicit solvent Molecular Dynamics simulations to specify the thermodynamic conditions in that the E proteins are induced to experience extensive structural changes, such as during the process of reducing pH. We study the structural behavior of the E protein monomer at acid pH solution of distinct ionic strength. Extensive simulations are carried out with all the histidine residues in its full protonated form at four distinct ionic strengths. The results are analyzed in detail from structural and energetic perspectives, and the virtual protein movements are described by means of the principal component analyses. As the main result, we found that at acid pH and physiological ionic strength, the E protein suffers a major structural change; for lower or higher ionic strengths, the crystal structure is essentially maintained along of all extensive simulations. On the other hand, at basic pH, when all histidine residues are in the unprotonated form, the protein structure is very stable for ionic strengths ranging from 0 to 225 mM. Therefore, our findings support the hypothesis that the histidines constitute the hot points that induce configurational changes of E protein in acid pH, and give extra motivation to the development of new ideas for antivirus compound design.
Resumo:
Electronic devices based on organic semiconductors have gained increased attention in nanotechnology, especially applicable to the field of field-effect transistors and photovoltaic. A promising class of materials in this reseach field are polycyclic aromatic hydrocarbons (PAHs). Alkyl substitution of these graphenes results in the selforganization into one-dimensional columnar superstructures and provides solubility and processibility. The nano-phase separation between the π-stacking aromatic cores and the disordered peripheral alkyl chains leads to the formation of thermotropic mesophases. Hexa-peri-hexabenzocoronenes (HBC), as an example for a PAH, exhibits some of the highest values for the charge carrier mobility for mesogens, which makes them promising candidates for electronic devices. Prerequisites for efficient charge carrier transport between electrodes are a high purity of the material to reduce possible trapping sites for charge carriers and a pronounced and defect-free, long-range order. Appropriate processing techniques are required to induce a high degree of aligned structures in the discotic material over macroscopic dimensions. Highly-ordered supramolecular structures of different discotics, in particular, of HBC derivatives have been obtained by solution processing using the zone-casting technique, zone-melting or simple extrusion. Simplicity and fabrication of highly oriented columnar structures over long-range are the most essential advantages of these zone-processing methods. A close relation between the molecular design, self-aggregation and the processing conditions has been revealed. The long-range order achieved by the zone-casting proved to be suitable for field effect transistors (FET).
Resumo:
In this study, the use of the discotic liquid crystalline HBCs and conjugated polymers based on 2,7-carbazole were investigated in detail as donor materials in organic bulk-heterojunction solar cells. It has been shown that they perform efficiently in photovoltaic devices in combination with suitable acceptors. The efficiency was found to depend strongly dependent on the morphology of the film. By investigation of a series of donor materials with similar molecular structures based on both discotic molecules and conjugated polymers, a structure-performance relation was established, which is not only instructive for these materials but also serves as a guideline for improved molecular design. For the series of HBCs used in this study, it is found that the device efficiency decreases with increasing length of the alkyl substituents in the HBC. Thus, the derivative with the smallest alkyl mantle, being more crystalline compared to the HBCs with longer alkyl chains, gave the highest EQE of 12%. A large interfacial separation was found in the blend of HBC-C6,2 and PDI, since the crystallization of the acceptor occurred in a solid matrix of HBC. This led to small dispersed organized domains and benefited the charge transport. In contrast, blends of HBC-C10,6/PDI or HBC-C14,10/PDI revealed a rather homogeneous film limiting the percolation pathways due to a mixed phase. For the first time, poly(2,7-carbazole) was incorporated as a donor material in solar cells using PDI as an electron acceptor. The good fit in orbital energy levels and absorption spectra led to high efficiency. This result indicates that conjugated polymers with high band-gap can also be applied as materials to build efficient solar cells if appropriate electron acceptors are chosen. In order to enhance the light absorption ability, new ladder-type polymers based on pentaphenylene and hexaphenylene with one and three nitrogen bridges per repeat unit have been synthesized and characterized. The polymer 2 with three nitrogen bridges showed more red-shifted absorbance and emission and better packing in the solid-state than the analogous polymer 3 with only one nitrogen bridge per monomer unit. An overall efficiency as high as 1.3% under solar light was obtained for the device based on 1 and PDI, compared with 0.7% for the PCz based device. Therefore, the device performance correlates to a large extent with the solar light absorption ability and the lateral distance between conjugated polymer chains. Since the lateral distance is determined by the length and number of attached alkyl side chains, it is possible to assume that these substituents insulate the charge carrier pathways and decrease the device performance. As an additional consequence, the active semiconductor is diluted in the insulating matrix leading to a lower light absorption. This work suggests ways to improve device performance by molecular design, viz. maintaining the HOMO level while bathochromically shifting the absorption by adopting a more rigid ladder-type structure. Also, a high ratio of nitrogen bridges with small alkyl substituents was a desirable feature both in terms of adjusting the absorption and maintaining a low lateral inter-chain separation, which was necessary for obtaining high current and efficiency values.
Resumo:
Xanthene dyes are known to form dimers with spectral characteristics that have been interpreted in terms of exciton theory. A unique aspect of H-type dimers is the fluorescence quenching that accompanies their formation. Using the principles of exciton theory as a guide, a series of protease substrates was synthesized with a xanthene dye on each side of the cleavage site. To bring the attached dyes into spatial proximity to form a dimer, the molecular design included structure determinant regions in the amino acid sequence. In addition, chromophores were chosen such that changes in absorption spectra indicative of exciton splitting were anticipated. Cleavage of the peptides by a protease resulted in disruption of the dimers and indeed significant absorption spectral changes were observed. Furthermore, substrate cleavage was accompanied by at least an order of magnitude increase in fluorescence intensity. This has allowed determination of intracellular elastase activity using a fluorescence microscope equipped with standard optics.
Resumo:
This work studies the development of polymer membranes for the separation of hydrogen and carbon monoxide from a syngas produced by the partial oxidation of natural gas. The CO product is then used for the large scale manufacture of acetic acid by reaction with methanol. A method of economic evaluation has been developed for the process as a whole and a comparison is made between separation of the H2/CO mixture by a membrane system and the conventional method of cryogenic distillation. Costs are based on bids obtained from suppliers for several different specifications for the purity of the CO fed to the acetic acid reactor. When the purity of the CO is set at that obtained by cryogenic distillation it is shown that the membrane separator offers only a marginal cost advantage. Cost parameters for the membrane separation systems have been defined in terms of effective selectivity and cost permeability. These new parameters, obtained from an analysis of the bids, are then used in a procedure which defines the optimum degree of separation and recovery of carbon monoxide for a minimum cost of manufacture of acetic acid. It is shown that a significant cost reduction is achieved with a membrane separator at the optimum process conditions. A method of "targeting" the properties of new membranes has been developed. This involves defining the properties for new (hypothetical -yet to be developed) membranes such that their use for the hydrogen/carbon monoxide separation will produce a reduced cost of acetic acid manufacture. The use of the targeting method is illustrated in the development of new membranes for the separation of hydrogen and carbon monoxide. The selection of polymeric materials for new membranes is based on molecular design methods which predict the polymer properties from the molecular groups making up the polymer molecule. Two approaches have been used. One method develops the analogy between gas solubility in liquids and that in polymers. The UNIFAC group contribution method is then used to predict gas solubility in liquids. In the second method the polymer Permachor number, developed by Salame, has been correlated with hydrogen and carbon monoxide permeabilities. These correlations are used to predict the permeabilities of gases through polymers. Materials have been tested for hydrogen and carbon monoxide permeabilities and improvements in expected economic performance have been achieved.
Resumo:
Molecular modi. cation is a quite promising strategy in the design and development of drug analogs with better bioavailability, higher intrinsic activity and less toxicity. In the search of new leads with potential antimicrobial activity, a new series of 14 4-substituted [N`-(benzofuroxan-5-yl) methylene] benzohydrazides, nifuroxazide derivatives, were synthesized and tested against standard and multidrug-resistant Staphylococcus aureus strains. The selection of the substituent groups was based on physicochemical properties, such as hydrophobicity and electronic effect. These properties were also evaluated through the lipophilic and electrostatic potential maps, respectively, considering the compounds with better biological pro. le. Twelve compounds exhibited similar bacteriostatic activity against standard and multidrug-resistant strains. The most active compound was the 4-CF(3) substituted derivative, which presented a minimum inhibitory concentration (MIC) value of 14.6-13.1 mu g/mL, and a ClogP value of 1.87. The results highlight the benzofuroxan derivatives as potential leads for designing new future antimicrobial drug candidates. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
Cylindrospermopsis raciborskii is a toxic-bloom-forming cyanobacterium that is commonly found in tropical to subtropical climatic regions worldwide, but it is also recognized as a common component of cyanobacterial communities in temperate climates. Genetic profiles of C. raciborskii were examined in 19 cultured isolates originating from geographically diverse regions of Australia and represented by two distinct morphotypes. A 609-bp region of rpoC1, a DNA-dependent RNA polymerase gene, was amplified by PCR from these isolates with cyanobacterium-specific primers. Sequence analysis revealed that all isolates belonged to the same species, including morphotypes with straight or coiled trichomes. Additional rpoC1 gene sequences obtained for a range of cyanobacteria highlighted clustering of C. raciborskii with other heterocyst-producing cyanobacteria (orders Nostocales and Stigonematales). In contrast, randomly amplified polymorphic DNA and short tandemly repeated repetitive sequence profiles revealed a greater level of genetic heterogeneity among C. raciborskii isolates than did rpoC1 gene analysis, and unique band profiles were also found among each of the cyanobacterial genera examined. A PCR test targeting a region of the rpoC1 gene unique to C. raciborskii was developed for the specific identification of C. raciborskii from both purified genomic DNA and environmental samples. The PCR was evaluated with a number of cyanobacterial isolates, but a PCR-positive result was only achieved with C, raciborskii. This method provides an accurate alternative to traditional morphological identification of C. raciborskii.
Resumo:
This study was carried out to evaluate the molecular pattern of all available Brazilian human T-cell lymphotropic virus type 1 Env (n = 15) and Pol (n = 43) nucleotide sequences via epitope prediction, physico-chemical analysis, and protein potential sites identification, giving support to the Brazilian AIDS vaccine program. In 12 previously described peptides of the Env sequences we found 12 epitopes, while in 4 peptides of the Pol sequences we found 4 epitopes. The total variation on the amino acid composition was 9 and 17% for human leukocyte antigen (HLA) class I and class II Env epitopes, respectively. After analyzing the Pol sequences, results revealed a total amino acid variation of 0.75% for HLA-I and HLA-II epitopes. In 5 of the 12 Env epitopes the physico-chemical analysis demonstrated that the mutations magnified the antigenicity profile. The potential protein domain analysis of Env sequences showed the loss of a CK-2 phosphorylation site caused by D197N mutation in one epitope, and a N-glycosylation site caused by S246Y and V247I mutations in another epitope. Besides, the analysis of selection pressure have found 8 positive selected sites (w = 9.59) using the codon-based substitution models and maximum-likelihood methods. These studies underscore the importance of this Env region for the virus fitness, for the host immune response and, therefore, for the development of vaccine candidates.
Resumo:
The SwissBioisostere database (http://www.swissbioisostere.ch) contains information on molecular replacements and their performance in biochemical assays. It is meant to provide researchers in drug discovery projects with ideas for bioisosteric modifications of their current lead molecule, as well as to give interested scientists access to the details on particular molecular replacements. As of August 2012, the database contains 21 293 355 datapoints corresponding to 5 586 462 unique replacements that have been measured in 35 039 assays against 1948 molecular targets representing 30 target classes. The accessible data were created through detection of matched molecular pairs and mining bioactivity data in the ChEMBL database. The SwissBioisostere database is hosted by the Swiss Institute of Bioinformatics and available via a web-based interface.
Resumo:
La meva incorporació al grup de recerca del Prof. McCammon (University of California San Diego) en qualitat d’investigador post doctoral amb una beca Beatriu de Pinós, va tenir lloc el passat 1 de desembre de 2010; on vaig dur a terme les meves tasques de recerca fins al darrer 1 d’abril de 2012. El Prof. McCammon és un referent mundial en l’aplicació de simulacions de dinàmica molecular (MD) en sistemes biològics d’interès humà. La contribució més important del Prof. McCammon en la simulació de sistemes biològics és el desenvolupament del mètode de dinàmiques moleculars accelerades (AMD). Les simulacions MD convencionals, les quals estan limitades a l’escala de temps del nanosegon (~10-9s), no son adients per l’estudi de sistemes biològics rellevants a escales de temps mes llargues (μs, ms...). AMD permet explorar fenòmens moleculars poc freqüents però que son clau per l’enteniment de molts sistemes biològics; fenòmens que no podrien ser observats d’un altre manera. Durant la meva estada a la “University of California San Diego”, vaig treballar en diferent aplicacions de les simulacions AMD, incloent fotoquímica i disseny de fàrmacs per ordinador. Concretament, primer vaig desenvolupar amb èxit una combinació dels mètodes AMD i simulacions Car-Parrinello per millorar l’exploració de camins de desactivació (interseccions còniques) en reaccions químiques fotoactivades. En segon lloc, vaig aplicar tècniques estadístiques (Replica Exchange) amb AMD en la descripció d’interaccions proteïna-lligand. Finalment, vaig dur a terme un estudi de disseny de fàrmacs per ordinador en la proteïna-G Rho (involucrada en el desenvolupament de càncer humà) combinant anàlisis estructurals i simulacions AMD. Els projectes en els quals he participat han estat publicats (o estan encara en procés de revisió) en diferents revistes científiques, i han estat presentats en diferents congressos internacionals. La memòria inclosa a continuació conté més detalls de cada projecte esmentat.
Resumo:
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.