911 resultados para Modular Architectures
Resumo:
Client puzzles are moderately-hard cryptographic problems neither easy nor impossible to solve that can be used as a counter-measure against denial of service attacks on network protocols. Puzzles based on modular exponentiation are attractive as they provide important properties such as non-parallelisability, deterministic solving time, and linear granularity. We propose an efficient client puzzle based on modular exponentiation. Our puzzle requires only a few modular multiplications for puzzle generation and verification. For a server under denial of service attack, this is a significant improvement as the best known non-parallelisable puzzle proposed by Karame and Capkun (ESORICS 2010) requires at least 2k-bit modular exponentiation, where k is a security parameter. We show that our puzzle satisfies the unforgeability and difficulty properties defined by Chen et al. (Asiacrypt 2009). We present experimental results which show that, for 1024-bit moduli, our proposed puzzle can be up to 30 times faster to verify than the Karame-Capkun puzzle and 99 times faster than the Rivest et al.'s time-lock puzzle.
Resumo:
To cover wide range of pulsed power applications, this paper proposes a modularity concept to improve the performance and flexibility of the pulsed power supply. The proposed scheme utilizes the advantage of parallel and series configurations of flyback modules in obtaining high-voltage levels with fast rise time (dv/dt). Prototypes were implemented using 600-V insulated-gate bipolar transistor (IGBT) switches to generate up to 4-kV output pulses with 1-kHz repetition rate for experimentation. To assess the proposed modular approach for higher number of the modules, prototypes were implemented using 1700-V IGBTs switches, based on ten-series modules, and tested up to 20 kV. Conducted experimental results verified the effectiveness of the proposed method
Resumo:
The actin microfilament plays a critical role in many cellular processes including embryonic development, wound healing, immune response, and tissue development. It is commonly organized in the form of networks whose mechanical properties change with changes in their architecture due to cell evolution processes. This paper presents a new nonlinear continuum mechanics model of single filamentous actin (F-actin) that is based on nanoscale molecular simulations. Following this continuum model of the single F-actin, mechanical properties of differently architected lamellipodia are studied. The results provide insight that can contribute to the understanding of the cell edge motions of living cells.
Resumo:
Titanium dioxide is one of the most basic materials in our daily life, which has emerged as an excellent photocatalyst material for environmental purification and photovoltaic material working in dye-sensitized solar cell. We present two types of TiO2 architectures which are constructed by plates and sheets, respectively, and both subunits are dominant with {001} facets. The photocatalytic degradation of methyl orange in UV/supported-TiO2 systems was investigated and the mechanism was discussed. The experimental results show that photocatalytic degradation rate is favoured by larger surface area. The sheet structure shows superior photocatalytic activity than plate structure. Moreover, the materials with sheet structure were also used to investigate the photovoltaic property. The power conversion efficiency is 7.57%, indicating the materials with this unique structure are excellent in photocatalytic and photovoltaic applications.
Resumo:
Designing the smart grid requires combining varied models. As their number increases, so does the complexity of the software. Having a well thought architecture for the software then becomes crucial. This paper presents MODAM, a framework designed to combine agent-based models in a flexible and extensible manner, using well known software engineering design solutions (OSGi specification [1] and Eclipse plugins [2]). Details on how to build a modular agent-based model for the smart grid are given in this paper, illustrated by an example for a small network.
Resumo:
In this chapter we will describe the contemporary variety of practice-oriented training institutions in Australia. We will examine the different ways in which public and private providers are managing the challenges of digitization and convergence. We will consider the logics governing film education this mix of providers pulls into focus, and we will outline some of the challenges providers face in educating, (re)training, and preparing their graduates for life and work beyond the film school. These challenges highlight questions about the accountabilities and responsibilities of practice-oriented film education institutions. This chapter begins with an introductory section that outlines these logics and questions. It explores some of the tensions and dynamics within the spectrum of issues through which we can understand film schools. The chapter then goes on briefly to describe the multifaceted training landscape in Australia, before profiling the leading public provider, the Australian Film, Television and Radio School (AFTRS), as well as the other leading public providers the Victorian College of the Arts, and the Griffith Film School. It concludes with a short section on film education in primary and secondary schools as the education sector prepares for the implementation of a national curriculum in which ‘media arts’ has a new centrality.
Resumo:
Creative Development: The Body and Light. Within the current cultural climate, the independent choreographer struggles to pursue and establish their artistic career outside the infrastructure of mainstream dance companies. The independent choreographer is challenged to articulate alternative choreographic models without the support of that infrastructure. My research examines that challenge by exploring my own independent choreographic practice through a number of performance-based dance projects. This exploration will be underpinned by theoretical research to enable clarification of the tacit understandings of an embodied practice and the point of intersection between practice and theory so as to articulate alternative choreographic models. As a starting point for that enquiry, an example is provided of how questions that emerge from within the choreographic practice can be discussed in terms of research through an initial investigation exploring light in relation to the moving body and the implications of atmospheres.
Resumo:
Sequential Design Molecular Weight Range Functional Monomers: Possibilities, Limits, and Challenges Block Copolymers: Combinations, Block Lengths, and Purities Modular Design End-Group Chemistry Ligation Protocols Conclusions
Resumo:
This special issue of Networking Science focuses on Next Generation Network (NGN) that enables the deployment of access independent services over converged fixed and mobile networks. NGN is a packet-based network and uses the Internet protocol (IP) to transport the various types of traffic (voice, video, data and signalling). NGN facilitates easy adoption of distributed computing applications by providing high speed connectivity in a converged networked environment. It also makes end user devices and applications highly intelligent and efficient by empowering them with programmability and remote configuration options. However, there are a number of important challenges in provisioning next generation network technologies in a converged communication environment. Some preliminary challenges include those that relate to QoS, switching and routing, management and control, and security which must be addressed on an urgent or emergency basis. The consideration of architectural issues in the design and pro- vision of secure services for NGN deserves special attention and hence is the main theme of this special issue.
Resumo:
Recently, a new approach for structuring acyclic process models has been introduced. The algorithm is based on a transformation between the Refined Process Structure Tree (RPST) of a control flow graph and the Modular Decomposition Tree (MDT) of ordering relations. In this paper, an extension of the algorithm is presented that allows to partially structure process models in the case when a process model cannot be structured completely. We distinguish four different types of unstructuredness of process models and show that only two are possible in practice. For one of these two types of unstructuredness an algorithm is proposed that returns the maximally structured representation of a process model.
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
Modular arithmetic has often been regarded as something of a mathematical curiosity, at least by those unfamiliar with its importance to both abstract algebra and number theory, and with its numerous applications. However, with the ubiquity of fast digital computers, and the need for reliable digital security systems such as RSA, this important branch of mathematics is now considered essential knowledge for many professionals. Indeed, computer arithmetic itself is, ipso facto, modular. This chapter describes how the modern graphical spreadsheet may be used to clearly illustrate the basics of modular arithmetic, and to solve certain classes of problems. Students may then gain structural insight and the foundations laid for applications to such areas as hashing, random number generation, and public-key cryptography.
Resumo:
This paper presents the results of a full-scale research project undertaken to assess scour losses/gains for modular tray green roof specimens placed on a mock-up building, and identify important factors to consider for wind design criteria. Visual assessment of the experimental results showed that usage of vegetation, parapet height, wind direction, and test duration were the predominant factors affecting scour resistance of the growth media in tested specimens. Statistical analysis results indicated that the differences in soil losses measured among Phase 2’s test trials were more significant than those in Phase 1. This was attributed to the lack of parapet, cornering wind conditions, and longer test duration found in Phase 2. Findings presented in this paper constitute a benchmark for future research to improve the knowledge gap that exists in green roof wind design.
Resumo:
NLS is a stream cipher which was submitted to the eSTREAM project. A linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which was called Crossword Puzzle (CP) attack. NLSv2 is a tweak version of NLS which aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack against NLSv2 is presented. The attack exploits high correlation amongst neighboring bits of the cipher. The paper first shows that the modular addition preserves pairwise correlations as demonstrated by existence of linear approximations with large biases. Next, it shows how to combine these results with the existence of high correlation between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around 2^−37. Consequently, we claim that NLSv2 is distinguishable from a random cipher after observing around 2^74 keystream words.
Resumo:
A new small full bridge module for MMCC research is presented. Each full bridge converter cell is a single small (65 × 30 mm) multilayer PCB with two low voltage high current (22 V, 40 A) integrated half bridge ICs and the necessary isolated control signals and auxiliary power supply (2500 V isolation). All devices are surface mount, minimising cell height (4 mm) and parasitic inductance. Each converter cell can be physically stacked with PCB connectors propagating the control signals and inter-cell power connections. Many cells can be trivially stacked to create a large multilevel converter leg with isolated auxiliary power and control signals. Any of the MMCC family members is then easily formed. With a change in placement of stacking connector, a parallel connection of bridges is also possible. Operation of a nine level parallel full bridge is demonstrated at 12 V and 384 kHz switching frequency delivering a 30 W 2 kHz sinewave into a resistive load. A number of new applications for this novel module aside from MMCC development are listed.